
Induce, Edit, Retrieve:
Language Grounded Multimodal Schema for Instructional Video Retrieval

Yue Yang, Joongwon Kim, Artemis Panagopoulou, Mark Yatskar, Chris Callison-Burch
University of Pennsylvania

{yueyang1, jkim0118, artemisp, myatskar, ccb}@seas.upenn.edu

Abstract

Schemata are structured representations of complex tasks
that can aid artificial intelligence by allowing models to
break down complex tasks into intermediate steps. We pro-
pose a novel system that induces schemata from web videos
and generalizes them to capture unseen tasks with the goal of
improving video retrieval performance. Our system proceeds
in three major phases: (1) Given a task with related videos,
we construct an initial schema for a task using a joint video-
text model to match video segments with text representing
steps from wikiHow; (2) We generalize schemata to unseen
tasks by leveraging language models to edit the text within
existing schemata. Through generalization, we can allow
our schemata to cover a more extensive range of tasks with
a small amount of learning data; (3) We conduct zero-shot
instructional video retrieval with the unseen task names as
the queries. Our schema-guided approach outperforms ex-
isting methods for video retrieval, and we demonstrate that
the schemata induced by our system are better than those
generated by other models.

1. Introduction

When encountering unfamiliar processes, people leverage
knowledge from previous experience and generalize it to new
situations. Cognitively, the information people use can be
thought of as a schema: a sequence of steps and a set of rules
that a person uses to perform everyday tasks [50]. A schema
can form a scaffold for adapting to unfamiliar contexts. For
example, a person may know the steps for baking a cake,
and when confronted with a new task of baking a cupcake,
she may try to modify a familiar cake process. In this work,
we study how a vision system can adopt such a reasoning
approach and improve video retrieval.

We propose a novel schema induction and generaliza-
tion approach that we apply to video retrieval called Induce,
Edit, Retrieve (IER). Our schemata are represented as sets
of natural language sentences describing steps associated
with a task. Unlike pre-training approaches that construct
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Figure 1. An example from our IER system, which first induces
a schema for Bake Chicken using a set of videos. Then it edits
the steps in the schema to adapt to the unseen task Bake Fish (the
tokens that have been edited are highlighted). Finally, IER relies
on the edited schema to help retrieve videos for Bake Fish.

implicit representations of procedural knowledge [57], our
knowledge is explicit, interpretable, and easily adapted. Fur-
thermore, while others have tried to derive such knowledge
directly from text [34,40,44], we induce it from video. Once
induced, our natural language schemata can be adapted to
new unseen situations via explicit edit operations driven by
BERT-based language models [7]. For example, IER is able
to adapt an induced schema about Baking chicken to a novel
task of Baking fish, as seen in Figure 1. Edited schemata
can then be used to recognize novel situations and improve
video retrieval systems.

We induce schemata by finding textual descriptions of
videos that are reliably associated with a single task. Our
system captions instructional YouTube videos from the
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Howto100M dataset [32] using candidate sentences from
wikiHow 1 [29] with pretrained video-text matching mod-
els [31]. Sentences with the highest average matching score
over all videos available for a task are retained for the schema.
The approach is simple and effective, leading to high-quality
schemata with only 50 videos per task. In total, we induce
22,000 schemata from 1 million videos with this approach.

While large, our initial set of induced schemata is incom-
plete. When faced with unseen tasks, we propose to adapt
existing schemata using edit operations. Our edits are di-
rectly applied to a schema’s textual representation and are
primarily guided by language models. Given a novel unseen
target task, we pair it with a previously induced source task
based on visual and textual similarity. Then, we modify the
steps in the source task’s schema using three editing rou-
tines, as shown in Figure 1. Broadly, our edit operations
first make object replacements to the schema using align-
ments between task names. For example, in Figure ,1 we
change all instances of “chicken” to “fish”. Then we use
a BERT [7] based model to both remove and modify the
text in the source schema. Sentences that are poorly asso-
ciated with the target task name according to the model are
removed. Then we find low probability tokens and allow a
BERT model to replace the ones with the lowest score with
higher probability tokens [14]. While this editing approach
relies on finding sufficiently similar tasks in our induction
set, our experiments show that our initial set of induced
schemata can generalize to unseen tasks found in datasets
such as COIN [46] or Youcook2 [60].

The generated schemata can be used to retrieve multi-
minute videos with extremely short queries 2 in the form
of task names. Given a query, we retrieve videos using
a schema from our initial induction set to produce a new
schema through editing. The new schema is used to expand a
short query into a larger set of sentences that can be matched
to short clips throughout a long video. We evaluate the
utility of our edited schemata for retrieval on Howto100M,
COIN, and Youcook2 videos. Results demonstrate that our
IER approach is significantly better at retrieving videos than
approaches that do not expand task names with schemata,
improving nearly 10% on top-1 retrieval precision. Further-
more, our edited schemata significantly outperform those
generated from large language models such as GPT-3 [2] in
retrieval. Finally, our extensive analysis shows that using
schemata for retrieving instructional videos helps more as
the length of the video increases.

2. Related Work

Previous work on schema induction has focused solely on
textual resources through statistical methods [1, 3, 4, 11, 36]

1www.wikihow.com
2On average, our queries are 4.4 tokens long.

and neural approaches [1,23,24,30,43,44,49,59]. While [57]
employ multimodal resources to extract procedural knowl-
edge, the output is an implicit vector representation, unlike
our work’s explicit and interpretable schema. Another line
of research [52] extracts verb-arguments from video clips
without aggregating information from multiple clips on the
same topic. [45] aligns instructional text to videos in order to
predict next steps but without schema generating method. To
the best of our knowledge, this is the first attempt to extract
explicit, human-readable schemata from videos and text.

Prior work has followed the paradigm of template ex-
traction and slot filling [6, 10, 18, 22, 26] for image/video
captioning to generalize to unseen situations and objects.
While we draw inspiration from this literature, we instead
retrieve human written sentences from wikiHow for caption-
ing and employ language models to automatically modify
them for unseen tasks.

Graphical knowledge extraction is not exclusive to
script induction. A line of research that extracts graphi-
cal representations from visual input is scene graph extrac-
tion [17, 17, 21, 47, 54, 58], i.e., the detection of objects and
their relations from an image. Scene graphs have been ap-
plied to captioning [5,16,25,55] and visual question answer-
ing [19,20]. While those methods rely on the same principle
of extracting a graphical structure from visual input, the rep-
resentations require explicit specification of label space for
objects, attributes, and relations. In our work, instead, we let
sentences stand in for structure. This allows us to leverage
commonsense in language models to adapt our schemata.

For the text-video retrieval task, earlier work has lever-
aged multimodal representations [8, 33] to more effec-
tively rank videos. Clip-based [9, 12, 48] and key-frame-
based [8, 35] ranking methods have been shown effective
in improving retrieval performance. However, they rely on
implicit multimodal representations rather than explicit, in-
terpretable, and malleable representations as proposed in
this work. Moreover, earlier methods generally focus on
retrieving short video clips that are only several seconds
long [13, 15]. While the videos in our retrieval task (see
Table 2) can be multiple minutes long.

3. Building a Schemata Library
We create our schemata in two steps, shown in the

first two panels of Figure 2: (1) Schema induction, where
schemata are generated for a set of tasks based on their asso-
ciated videos, and (2) Schema editing, where schemata from
the first phase are modified to address unseen tasks with no
video data available.

3.1. Formal Overview

We assume a set of tasks T partitioned into known tasks
K and unknown tasks U . Every task in the known set,
t ∈ K, is associated with a set of videos Vt. We also assume
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Figure 2. A detailed example of the IER system. The left panel demonstrates the induction phase, which takes in a set of videos describing
the same task and outputs a schema in the format of a bag of sentences. The middle panel shows the schema editing system, which modifies
the existing schema for unseen tasks, e.g., editing the schema of Bake Chicken for the unseen task Bake Fish. Finally, in the right panel, we
use the edited schema of the unseen task to retrieve its associated videos by matching video segments with sentences in the edited schema.

a background textual corpus of candidate steps, B, made up
of sentences describing tasks, not necessarily in T .

Our goal is to construct a schema, St, for every task t ∈ T .
We proceed in two steps. First, we use videos associated
with tasks in K to align sentences from B using a matching
function F that scores pairs of short clips and sentences. The
highest scoring alignments form the set of sentences in St.
Second, given an unknown task, t′ ∈ U , we find a similar
source task t ∈ K and modify its schema St to create St′ .

3.2. Schema Induction

Given a known task t ∈ K, and its associated videos, Vt,
we induce St by retrieving sentences from B that reliably
describe steps performed in Vt. Each video v ∈ Vt can be
partitioned into short segments or clips. For each segment
c ∈ v, our goal is to find textual descriptions of the step
being performed.

We use a pre-trained matching function F between video
and text to compute the matching score F (c, s) between a
segment c and a step description s. In practice, we use MIL-
NCE [31], a model trained on HowTo100M videos, to create
video and textual embeddings with high similarity on co-
occurring frames and transcripts. For each clip c, we retain
the 30 highest scoring step descriptions from B. Afterwards,
for each step in the union of step descriptions retained for
a task t, we average the matching score over all videos Vt

associated with the task:

score(s, t) =
1

|Vt|
∑
v∈Vt

( 1

|v|
∑
c∈v

F (c, s)
)

(1)

We select the top-100 step descriptions for each task t based
on the score above. Finally, we reduce redundancy by clus-
tering similar descriptions. 3 We select the step with the
highest matching score from each cluster to construct the
schema St. 4

3.3. Schema Editing

To produce the schema St′ for an unseen target task t′,
we edit the schema of a similar source task t in known set
K. To achieve this objective, we develop a schema editing
pipeline composed of three modules to manipulate the steps
of the source schema (See Table 1 for examples). Overall,
our editing approach has three steps, performed in sequence,
starting from deterministic replacements and ending with
token-level edits performed by a language model. (1) Object
Replacement: we replace aligned objects from task names.
(2) Step deletion: we remove irrelevant steps using a BERT-
based question-answering system. (3) Token Replacement:
we adjust steps at the token level by allowing a language
model to replace tokens that have low probability.

3Paraphrases are very common in wikiHow, e.g., “Remove the chicken
from the oven” and “Remove your chicken from the oven” both exist in
corpus B. We use AgglomerativeClustering API from sklearn for clustering.

4On average, the number of sentences in each schema is 25.1.
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Object Replacement Step Deletion Token Replacement
Cook Ham 0.86−−→ Cook Lamb Transplant a Young Tree 0.89−−→ Remove a Tree Prepare Fish 0.82−−→ Prepare Crabs

Put the ham in the oven. Fill your pot with a balanced fertilizer. Cut the fins from the fish using kitchen shears.
↓ ↓delete ↓

Put the lamb in the oven. Fill your pot with a balanced fertilizer. Cut the shells from the crabs using steel scissors.

Clean a Guitar 0.84−−→ Build a Violin Fix a Toilet 0.85−−→ Remove a Toilet Make Healthy Donuts 0.88−−→ Bake Healthy Cookies
Use a polish for particularly dirty guitars. Test out the new flapper. Slice your donuts into disks.

↓ ↓delete ↓
Use a polish for particularly dirty violins. Test out the new flapper. Slice your cookies into squares.

Trap a Rat 0.84−−→ Trap a Rabbit Brush a Cat 0.87−−→ Brush a Long Haired Dog Wash Your Bike 0.84−−→Wash a Motorcycle
Bait and set snap rat traps. Comb and groom your pet. Clean the bike chain with a degreaser.

↓ ↓include ↓
Bait and set snap rabbit traps. Comb and groom your pet. Clean the motorcycle thoroughly with a towel.

Table 1. Examples of the operations performed by the three editing modules. Source task G−→ Target task represents the generalization from a
source task to a target task with task similarity score G, Source step ↓ Target Step denotes the editing of a source step to a target step. The
yellow words are replaced during the Object Replacement operation and blue tokens are replaced by masked language model.

Object Replacement Each task name has a main object,
e.g., “chicken” in Bake Chicken, found using a part-of-
speech tagger. For each task name, we retrain the first tagged
noun as the main object. We replace all occurrences of the
main object in the source schema St with the main object of
the target task. For example, in the first column of Table 1,
we replace “Ham” with “Lamb”.

Step Deletion Some steps are irrelevant for the new target
task. For example, the task Bake Chicken has a step “Insert a
roasting thermometer into the thigh” which is inappropriate
for the target task Bake Fish. Ideally, steps such as “Preheat
the oven”, which apply to both Bake Chicken and Bake Fish,
will be preserved.

To identify which step to delete, we utilize a sentence
BERT model [41] fine-tuned on question-answer pairs.5 The
model, X , computes a compatibility score between a ques-
tion and an answer. It is trained to embed a question and an
answer separately and then use the embedding similarity as
the score. We use the model to score pairs of task names
and steps and include a step in St′ when X scores it as less
compatible with t′q than tq by a significant margin:{

X(t′q, s) < β ·X(tq, s) Delete
X(t′q, s) ≥ β ·X(tq, s) Include

(2)

where β is a hyper-parameter determined on validation data.
Examples of step deletions performed by our system can be
found in the second column of Table 1.

Token Replacement Finally, we adapt elements of the
source task’s schema at the token level, allowing a masked
language model 6 to replace words in a step with more ap-
propriate alternatives. We build on existing generation work
using BERT-based models [14]. We prompt the language

5multi-qa-mpnet-base-cos-v1.
6We choose distilroberta-base.

model with a task name and a step, i.e., “How to [TASK]?
[STEP]” and then greedily allow it to replace the least likely
noun in the step with a higher scoring noun. We repeat this
iteratively on modified steps, a fixed number of times 7. For
example, as in the third column of Table 1, we replace the
word “fins” from a fish-based source task with “shells” in a
crab-based target task.

4. Schema Guided Video Retrieval
To test the effectiveness of our schema induction and edit-

ing approaches, we formulate a novel video retrieval frame-
work. Given queries in the form of task names, we must
retrieve long multi-minute videos corresponding to people
instructing others on how to execute these tasks. We use in-
duced and edited schemata to retrieve such long videos. We
formulate a novel matching function that combines global in-
formation from the task name and steps information from the
schema to retrieve such videos. When using edited schemata,
we average over multiple possible source tasks, allowing the
model to combine information from multiple related tasks.

4.1. Matching Function

Global Matching Previous work on video retrieval largely
focuses on short videos [15, 27, 28]. They work predomi-
nately by matching a single feature vector, representing the
entire video, to a query. However, in our retrieval scenario
where videos are several minutes long, such an approach
is impractical. Instead, given a query task, t, and a video,
v with associated segments Vc, we can average over a lo-
cal matching score F , to estimate the overall compatibility
between the task and the video:

Mtask(t, v) =
1

|Vc|
∑
c∈Vc

F (c, t) (3)

7Determined by the number of nouns in a step.
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This global averaging approach serves as the starting point
for our schema-based retrieval function.

Step Aggregation Model Following [56] who use sets of
steps from wikiHow to match images, we define a video
analog. The core idea is to score the compatibility between a
schema, St, and a video, v, by finding an alignment between
video segments and each sentence of the schema, s ∈ St.
The alignment is done greedily, selecting the best video
segment for each step in the schema. The average quality
of these alignments can then be interpolated with the global
score above, to form our final scoring function:

Mstep(St, v) =
1

|St|
∑
s∈St

max
c∈Vc

F (c, s)

Magg(t, v) = (1− λ)Mtask(t, v) + λMstep(St, v)

(4)

where λ is a hyperparameter tuned on the development data.
Our scoring function smoothly interpolates between match-
ing video directly with the task name and aligning video
segments with the steps in the schema.

4.2. Task Similarity

Our final retrieval system integrates over uncertainty in
the schema. Since there are many possible source tasks for an
unseen task, each of which can be used to predict a different
schema, we average over possibilities. Each possibility is
weighted by textual and visual similarity between the source
and target task. This allows us to avoid using a schema from
a task such as Bake Cake to retrieve Bake Fish videos.

We score the similarity of tasks t and t′ using textual
(Gtxt) and visual (Gvis), similarity between the two tasks:

G(t, t′) = max(Gtxt(t, t
′), Gvis(t, t

′)) (5)

Textual SimilarityGtxt is the sentence-level similarity com-
puted by sentence-BERT [41].8 We compute the cosine
similarity between the embeddings of t and t′ extracted by
sentence-BERT as Gtxt(t, t

′).

Visual Similarity Gvis is computed from the image repre-
sentations of the tasks. For each task, we retrieve images
from Google image search. 9 Then we apply an image en-
coder10 to each image and average the resultant representa-
tions. This aggregate vector is used to represent the visual
embedding of the task. We compute the cosine similarity
between the features of source and target task as Gvis(t, t

′).

8We use all-mpnet-base-v2 as the text encoder.
9We use simple image download package to get the urls of the

Google images.
10We use clip-ViT-B-32 as our image encodee.

4.3. Video Retrieval on Unseen Tasks

In order to apply the step aggregation model in retriev-
ing videos of an unseen task t′, we must find source task
schemata to edit. Given a target task t′, we first retrieve
a set of R most similar tasks, Ts, using G. For each re-
trieved source task ts ∈ Ts, we construct an edited schema,
Sts→t′ , using the routines defined in Section 3.3. Edited
schemata are integrated into retrieval based on task similar-
ity, G(ts, t′):

M(t′,v) = (1− λ)Mtask(t
′, v)

+
λ

R

∑
ts∈Ts

G(ts, t
′) · Mstep(Sts→t′ , v)

(6)

5. Experiments
This section will introduce the evaluation datasets and

the baselines used for comparison, and the implementation
details of our IER model.

5.1. Datasets

Howto100M We use the Howto100M [32] dataset for
schema induction, as described in Section 3.2. Howto100M
is collected from YouTube using 1.22M instructional videos
of 23k different visual tasks. These visual tasks are selected
from wikiHow articles, and each task is described by a set
of step-by-step instructions in the article. The number of
videos for each Howto100M task varies significantly. We
keep the tasks that have at least 20 videos, which results in
21,299 tasks. 11 The task names are annotated by parts of
speech (POS) in order to identify the main object for the
Object Replacement operation during editing. 12

Howto-GEN To evaluate the schema editing modules, we
split Howto100M tasks into two sets of known and unknown
tasks. We select the tasks from Howto100M with exactly
one noun, resulting in 3,365 tasks with 2,184 unique main
objects. Then we randomly select 500 tasks for training and
500 tasks for validation and retrain 2,365 tasks for testing.
Based on this split, there are 1,088 unseen main objects
in the test set. We choose 5 videos for each test task for
retrieval and pair them with a fixed set of 2,495 randomly
sampled distractors videos to constitute a retrieval pool of
2,500 videos. 13

COIN [46] is a large-scale instruction video dataset with
11,827 videos for 180 tasks. The COIN tasks contain con-
cepts unseen in Howto100M, such as “Blow Sugar”, “Play

11The videos of Howto100M are retrieved from Youtube, and each video
is associated with a rank. We delete the videos with Youtube search rank
worse than 150 and assume these videos are not closely related to the task.

12We use the flair POS tagger https://huggingface.co/
flair/pos-english.

13We select the top-5 videos of each task for testing based on the Youtube
search rank .
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Dataset # of tasks # of videos Avg. video length (s)
Howto-GEN 2,365 11,825 392.9

COIN 180 900 143.2
Youcook2 89 436 310.9

Table 2. Statistics of the evaluation datasets (test set).

Curling”, “Make Youtiao”, etc. We treat COIN as a zero-shot
test set; we randomly pick five videos for every task 14. We
finally construct a retrieval pool of 900 videos for 180 tasks.

Youcook2 [60] contains 2,000 long videos for 89 cooking
recipes. We treat recipe names as tasks and use the same
split as [32] to guarantee that there is no overlap between
the videos in Youcook2 and Howto100M. We finally form a
retrieval pool of 436 videos.

5.2. Preprocessing

The video segments boundaries in Howto100M are gener-
ated from an Automatic Speech Recognition system and are
noisy and redundant. To reduce the number of segments per
video, we apply k-means to the S3D features [51] of the clips,
iteratively range k from 5 to 10 and select the best k with
the highest silhouette score [42]. Then we pick the segment
nearest to the center of each cluster to form the sequence of
clips for each video. For COIN and Youcook2, we use the
human-annotated video segments provided in their dataset.

5.3. Baselines

Global Matching We leverage the MIL-NCE model with
the global averaging method described in Section 4 to re-
trieve procedural videos.

Step Aggregation Model As proposed in Section 4, we
use edited schemata to improve video retrieval performance.
For comparison, we use alternative methods to expand task
names into schemata:

• T5 [30] We propose a generation-based schema induction
approach and fine-tune a multilingual T5 model [53] using
the wikiHow scripts. The model can generate a list of
steps given a task as the prompt.

• GPT-2 [39] Following the same experimental setup as
T5, we fine-tune a GPT-2-large model to generate the
schemata.

• GPT-3 [2] We use the OpenAI GPT-3 (davinci) model to
conduct zero-shot schema generation using the prompt -
“How to Task Name? Give me several steps.”.

• GOSC Goal-Oriented Script Construction (GOSC) [30] is
a retrieval-based approach to construct a schema. GOSC
utilizes a Step Inference model to gather the set of desired
steps from wikiHow given the input task name. We use

14No task names are shared between COIN and HowTo100M

the off-the-shelf model, so some of the Howto-GEN test
tasks have been seen during the training process of GOSC.

• wikiHow We treat wikiHow as a schema library. For each
unseen test task, we find the most similar task in wikiHow
based on the similarity score and apply the schema editing
modules to obtain the edited schema.

• Oracle Our oracle schemata are written by humans for
all datasets. For Howto-GEN, the oracle schemata are
the steps in the exact, corresponding wikiHow articles.
COIN provides human-annotated step labels for each task
which we consider as the oracle schemata. For Youcook2,
we treat the text annotations of the video segments as the
oracle schemata.

5.4. Implementation Details

Hyperparameters We fine-tune the hyperparameters on the
validation set of Howto-GEN. We set β = 0.8 in equation
2 as the threshold to determine which step to remove. We
select λ = 0.6 to adapt the weight of the step score in
equation 4. The two hyperparameters are fixed for all tests.

IER When evaluated on the Howto-Gen test set, the IER
model can only have access to the schemata of 500 training
tasks. Meanwhile, for COIN and Youcook2, IER can use all
21,299 schemata learned from Howto100M. As described in
equation 6, we can select multiple schemata to assist retrieval.
We report the performance of IER with the top-1 schema
and the top-3 schemata (IER3) in the results.

5.5. Evaluation Metrics

We use the standard metrics to evaluate retrieval perfor-
mance: Precision@1 (P@1), Recall@K (R@K), Mean rank
(Mean r), Median rank (Med r), and Mean Reciprocal Rank
(MRR). We use ↑ or ↓ to indicate whether a higher or lower
score is better in all tables and figures.

6. Results

6.1. Main Results

As shown in Table 3, almost all step aggregation models
assisted with schemata outperform the MIL-NCE model
except for T5. These results suggest that the use of schemata
is a promising way to enhance the retrieval of procedural
videos. Furthermore, our IER model outperforms the other
purely textual schema induction baselines and is close to the
performance of the oracle.

We analyze the retrieval performance by video length in
Figure 3. The performance of the model without schemata
declines rapidly as video length increases. However, when
using schemata induced and edited by IER, the performance
declines substantially less on long videos.
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Method Howto-GEN COIN Youcook2
P@1↑ R@5↑ R@10↑ Med r↓ MRR↑ P@1↑ R@5↑ R@10↑ Med r↓ MRR↑ P@1↑ R@5↑ R@10↑ Med r↓ MRR↑

MIL-NCE [31] 45.2 31.0 43.1 15.0 .198 48.3 37.1 52.8 9.5 .227 27.0 18.2 26.5 32.0 .126

St
ep

A
gg

re
ga

tio
n T5 [30] 44.0 29.9 41.0 19.0 .190 46.1 35.3 50.7 10.0 .219 21.3 16.0 24.7 61.5 .108

GPT-2 [39] 46.0 31.5 43.3 16.0 .200 48.9 39.2 53.4 8.0 .233 31.5 19.0 27.3 44.5 .130
GPT-3 [2] 49.3 33.3 45.7 13.0 .211 53.3 42.1 59.0 8.0 .252 37.1 22.4 34.6 27.0 .160

GOSC [30] 54.7 37.0 49.8 11.0 .231 53.9 41.6 55.1 8.0 .248 30.3 20.7 34.8 28.0 .146
wikiHow 51.9 35.4 47.8 11.0 .222 53.9 40.8 56.1 7.0 .246 31.5 21.0 34.2 24.5 .149

IER (Ours) 54.4 37.3 50.1 10.0 .231 57.2 42.2 57.8 7.0 .256 41.6 25.8 38.8 20.0 .175
IER3 (Ours) 55.0 37.4 50.6 10.0 .234 56.1 42.3 59.1 8.0 .258 40.4 25.1 38.8 20.0 .172

Oracle 56.5 38.0 50.8 10.0 .237 60.0 43.4 59.3 7.0 .262 52.8 33.5 47.1 14.0 .215

Table 3. Retrieval performance on Howto-GEN, COIN and Youcook2. Baselines include retrievals based on global matching, aggregation of
steps generated from state-of-the-art language models, goal-oriented script construction (GOSC), and wikiHow. The Oracle upper bound
contains human-written step labels for each task. Observe that our IER systems outperform the baselines across all metrics.
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Figure 3. Retrieval performance by video length (in the number
of clips). We group the test videos of Youcook2 by the number of
clips per video and compute the mean rank for each group.
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Figure 4. Retrieval performance by task similarity. We sort the
test tasks of Howto-GEN based on their task similarity (G) and
compute their mean rank for every batch of 400 tasks.

6.2. Editing Module Ablations

To validate whether each editing module benefits the re-
trieval, we conduct an ablation study where we disable these
modules one by one. As shown in Table 4, the editing mod-
ules never hurt and often improve retrieval performance for

Method P@1↑ R@5↑ R@10↑ Med r↓ MRR↑

H
ow

to
-G

E
N full 54.4 37.3 50.1 10.0 .231

− mask 53.7 36.3 49.3 11.0 .229
− deletion 53.6 36.9 49.8 11.0 .230
− replacement 51.5 34.9 47.3 12.0 .220
− all 45.5 31.0 43.1 15.0 .199

C
O

IN

full 57.2 42.2 57.8 7.0 .256
− mask 53.9 42.3 58.3 7.0 .257
− deletion 58.3 42.0 58.0 7.0 .258
− replacement 53.8 41.0 59.2 7.5 .251
− all 54.4 39.6 53.7 8.0 .246

Yo
uc

oo
k2

full 41.6 25.8 38.8 20.0 .175
− mask 40.4 25.4 39.3 20.0 .173
− deletion 41.6 26.0 39.1 21.0 .175
− replacement 40.4 25.8 38.5 20.0 .173
− all 40.4 26.0 39.9 21.0 .174

Table 4. Ablation study on editing modules. “full” represents
using all three modules and “− all” denotes removing all three
modules. “− mask”, “− deletion” and “− replacement” are short
for removing “Token Replacement”, “Step Deletion” and “Object
Replacement” respectively. The numbers with underline are the
ones lower than “full”. The highest number of each metric is bold.

Howto-GEN and COIN. However, the editing modules are
not necessary for Youcook2 because the tasks of Youcook2
are very close to the ones in Howto100M, and we can always
find schemata of similar tasks. As shown in Figure 4, editing
is more useful when task similarity is low. 15

6.3. Schemata Transfer

Our schemata can improve video retrieval even when used
with representations they were not induced on. For example,
we experiment with CLIP [38]. Following [28, 37], which
leverage CLIP for video via average-pooling, we convert
video clips into sequences sampled at 10 FPS. Then we
use clip-ViT-B-32 to encode each frame and average
over the frame-level features for video representations. This
allows us to use CLIP as the matching function F .

We compute the retrieval performance of CLIP on COIN
using the global matching method and the step aggregation

15We compute the average task similarity for each dataset, Howto-GEN
is 0.88, COIN is 0.92, and Youcook2 is 0.97, which explains why editing
modules are not helpful for Youcook2.
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Figure 5. Qualitative examples of retrieval results. We demonstrate our video retrieval process for two unseen tasks. On the top, we display
the induced schemata of existing tasks. Below, we display schemata for the unseen tasks obtained from our editing module. Finally, we
display the top-5 videos retrieved using our edited schemata. We show at most 4 segments for each video and each segment is associated
with the top-1 matched step in the schema. While many of our videos are correctly retrieved, some videos are not due to two main factors: 1)
our joint video-text model propagates some errors, and 2) some of the videos are labeled under different tasks while containing very similar
steps, such as video 2 which belongs to the task Apply a Two Tone Finish to Furniture that is very close to the query Stain Cabinets.

Model P@1↑ R@5↑ R@10↑ Med r↓ MRR↑
MIL-NCE 48.3 37.1 52.8 9.5 .227
+schema 57.2 42.2 57.8 7.0 .256
CLIP [38] 58.9 44.9 58.8 6.0 .264
+schema 65.0 47.4 60.8 5.5 .282

Table 5. Retrieval performance on COIN using MIL-NCE and
CLIP as the matching functions. +schema represents using schema
induced by IER (MIL-NCE as matching function) for retrieval.

method with the same schemata as MIL-NCE. As shown in
Table 5, MIL-NCE has a lower performance than CLIP, but
with the help of our schemata, it achieves comparable perfor-

mance to CLIP. In addition, the performance of CLIP also
increases significantly by using our schemata. This indicates
that our schemata are transferable across different video-text
models to improve the video retrieval performance.

7. Conclusion
We propose a schema induction and generalization system

that improves instructional video retrieval performance. We
demonstrate that the induced schemata benefit video retrieval
on unseen tasks, and our IER system outperforms other
methods. In the future, we plan to investigate the structure of
our schemata, such as the temporal order, and discover other
applications of schemata.
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