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Abstract

Reasoning about images with rich text, such
as charts and documents, is a critical applica-
tion of vision-language models (VLMs). How-
ever, VLMs often struggle in these domains
due to the scarcity of diverse text-rich vision-
language data. To address this challenge, we
present CoSyn, a framework that leverages the
coding capabilities of text-only large language
models (LLMs) to automatically create syn-
thetic text-rich multimodal data. Given input
text describing a target domain (e.g., “nutri-
tion fact labels”), CoSyn prompts an LLM to
generate code (Python, HTML, LaTeX, etc.)
for rendering synthetic images. With the un-
derlying code as textual representations of the
synthetic images, CoSyn can generate high-
quality instruction-tuning data, again relying on
a text-only LLM. Using CoSyn, we constructed
a dataset comprising 400K images and 2.7M
rows of vision-language instruction-tuning data.
Comprehensive experiments on seven bench-
marks demonstrate that models trained on our
synthetic data achieve state-of-the-art perfor-
mance among competitive open-source mod-
els, including Llama 3.2, and surpass propri-
etary models such as GPT-4V and Gemini 1.5
Flash. Furthermore, CoSyn can produce syn-
thetic pointing data, enabling VLMs to ground
information within input images, showcasing
its potential for developing multimodal agents
capable of acting in real-world environments.

1 Introduction

Instruction-tuned vision-language models (VLMs)
have shown strong performance across a range of
multimodal tasks (Radford et al., 2021; OpenAI,
2023; Liu et al., 2023). However, these tasks typ-
ically focus on general image understanding over
natural images rather than the specialized reason-
ing required for text-rich images such as charts,
documents, diagrams, signs, labels, and screen-
shots. Understanding and reasoning over text-rich
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Figure 1: Given a novel task (e.g., answering questions
about nutrition facts), our code-guided generation sys-
tem can produce targeted synthetic data to enhance the
performance of VLMs on that specific task.

images is crucial for many applications, includ-
ing analyzing scientific literature and figures (Asai
et al., 2024), improving accessibility for users with
visual impairments (Gurari et al., 2018), and en-
abling agentic workflows in real-world environ-
ments (Xie et al., 2024). Effectively interpreting
these structured visual formats requires both tex-
tual comprehension and spatial reasoning, which
current models struggle with due to the limited
availability of high-quality, realistic, and diverse
vision-language datasets (Methani et al., 2020).

To address these challenges and inspired by the
fact that text-rich images are typically rendered
from code, we develop Code Guided Synthetic
data generation system (CoSyn), a flexible frame-
work for generating diverse synthetic text-rich mul-
timodal data for vision-language instruction tun-
ing. As illustrated in Figure 2, CoSyn can gen-
erate multimodal data for various target domains
from a short natural language query, such as book
covers. CoSyn leverages text-only LLMs, which
excel at code generation, to produce both data and
code that render diverse text-rich images using 11
supported rendering tools (e.g., Python, HTML,
LaTeX). Grounded in the underlying code repre-
sentation of the images, textual instructions are also
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generated by the text-only LLM to create vision-
language instruction-tuning datasets.

Using this framework, we construct the CoSyn-
400K, as shown in Figure 3, a large-scale and di-
verse synthetic vision-language instruction-tuning
dataset tailored for text-rich image understanding.
We comprehensively evaluate the effectiveness of
training on CoSyn-generated synthetic data across
seven text-rich VQA benchmarks. Our model
achieves state-of-the-art performance among com-
petitive open-source models and surpasses propri-
etary models such as GPT-4V and Gemini 1.5. No-
tably, training on CoSyn synthetic data enables
sample-efficient learning, achieving stronger per-
formance with less data. In addition, CoSyn can
synthesize chain-of-thought (CoT) reasoning data
(Wei et al., 2022), improving performance on tasks
requiring multi-hop reasoning. A fine-grained anal-
ysis of question types in ChartQA (Masry et al.,
2022) reveals that training on CoSyn-400K results
in stronger generalization to human-written ques-
tions. In contrast, models trained solely on exist-
ing academic datasets often overfit to biased train-
ing data, overperforming on templated or machine-
generated questions but struggling with more real-
istic, human-asked queries.

We then identify a key limitation of open-source
VLMs that they struggle to generalize to out-of-
domain tasks they were not trained on. As shown
in Figure 1, we introduce NutritionQA, a novel
benchmark for understanding photos of nutrition
labels, with practical applications like aiding users
with visual impairments. Open-source VLMs per-
form poorly on this novel task, even after training
on millions of images. However, by training on
CoSyn-400K, our model adapts strongly to this
novel domain in a zero-shot setting with signifi-
cantly less training data. Remarkably, by gener-
ating just 7K in-domain synthetic nutrition label
examples using CoSyn for fine-tuning, our model
surpasses most open VLMs trained on millions of
images. This highlights CoSyn’s data efficiency
and ability to help VLMs adapt to new domains
through targeted synthetic data generation.

Finally, beyond the standard VQA task, we use
CoSyn to generate synthetic pointing training data,
which is particularly useful in agentic tasks. The
pointing data enables VLMs to retrieve coordinates
for specific elements in a screenshot given a query
like “Point to the Checkout button” (Deitke et al.,
2024). Our model trained on synthetic pointing
data achieves state-of-the-art performance on the

ScreenSpot click prediction benchmark (Baechler
et al., 2024). Overall, our work demonstrates that
synthetic data is a promising solution for advancing
vision-language models in understanding text-rich
images and unlocking their potential as multimodal
digital assistants for real-world applications.

2 Related Work

Vision Language Models. Tsimpoukelli et al.
(2021) first demonstrate that pre-trained, frozen
language models can be extended to process vi-
sual inputs. Previous works fuse vision and lan-
guage modalities using different strategies, such as
cross-attention mechanisms (Alayrac et al., 2022)
and Q-Former (Li et al., 2023). More recent ar-
chitectures have converged on using MLP layers
to project visual features into the language space
(Liu et al., 2023). However, these architectures
are often imbalanced, with the language backbone
substantially larger than the visual encoder. As a
result, without high-quality image-text data, mod-
els may overly rely on language priors, leading to
hallucinations in their responses (Bai et al., 2024).
Our work addresses this issue by generating high-
quality multimodal data for text-rich images.

Text-rich Images Understanding. Chart under-
standing and text-rich image understanding con-
tinue to challenge state-of-the-art models as natu-
rally occurring vision-language data that can sup-
port training for understanding text-rich images is
still scarce (Kahou et al., 2017; Kafle et al., 2018;
Xu et al., 2023; Mukhopadhyay et al., 2024). In
addition to charts and plots, a number of datasets
address other kinds of text-rich images such as doc-
uments, infographics, diagrams and figures, and
screenshots (Siegel et al., 2016; Mathew et al.,
2021, 2022; Baechler et al., 2024; Roberts et al.,
2024) have been made available. Many of these
benchmarks are limited in size and scope, diversity
of visualization types, and question types, making
them suitable for evaluation but not for training
data that could lead to generalized performance.

Synthetic Data for VLM. Generating synthetic
images with annotations grounded in known
source representations has been widely used in do-
mains with limited vision-language data (Johnson-
Roberson et al., 2017; Johnson et al., 2017;
Cascante-Bonilla et al., 2022; Zhang et al., 2024).
This approach has been applied to chart and plot
VQA typically using a limited small set of chart
types and by instantiating handcrafted question
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Figure 2: The overview of our Code Guided Synthetic data generation system (CoSyn), which has 20 generation
pipelines based on 11 render tools. Given a user query, e.g., “book cover,” CoSyn selects the appropriate pipelines
and starts with generating diverse topics conditioned on personas, then synthesizes detailed data for code generation.
The code renders the image and is also fed as context for an LLM to construct instruction-tuning data.

templates (Kahou et al., 2017; Kafle et al., 2018;
Methani et al., 2020; Singh and Shekhar, 2020).
Following this, Li and Tajbakhsh (2023) and Car-
bune et al. (2024a) explore using text-only LLMs
to generate annotations or Q&A pairs from table
or text descriptions associated with charts to train
VLMs. Other recent approaches, similar to the pro-
cedure in this work, explore generating data and
code to render synthetic charts (Han et al., 2023;
Shinoda et al., 2024; Xia et al., 2024) while us-
ing the data and code representation to generate
annotations and Q&A. These works generate syn-
thetic data that is still highly limited in terms of
the diversity of topics, figure types, and rendering
pipelines, which is important for generalizing to
out-of-distribution tasks. In our work, we expand
the scope of our generation beyond charts to en-
compass a wider range of diverse text-rich images.

3 Problem Formulation

Given a text query q about an image type, e.g.,
flow charts, our goal is to create a synthetic mul-
timodal dataset Dq =

{
(I, T )

}
, where I is the

image, and T is the textual instruction-tuning data
(e.g., question-answer pairs). Dq is used to train a
VLM to improve its ability to understand images
related to q. The core idea of our approach is using
code C as the intermediate representation to bridge
the image and text. The overall generation process
can be decomposed as follows:

P
(
I, T |q

)
= PLM

(
C|q

)
· P

(
I|C

)
· PLM

(
T |C

)
where PLM

(
C|q

)
represents prompting a language

model to generate code C, which is executed to
render the image, P

(
I|C

)
. PLM

(
T |C

)
uses code

C (without the image) as context for an LLM to
generate the textual instruction-tuning data.

4 CoSyn System

Figure 2 illustrates the workflow of our Code-
Guided Synthetic data generation system (CoSyn).
The system takes a language input, such as “gen-
erate a dataset of book covers”, and outputs a mul-
timodal dataset. Based on the input query, CoSyn
selects one of 20 generation pipelines built on 11
rendering tools. The process starts with topic gener-
ation, conditioned on a sampled persona that guides
the style and content. Next, the system generates
data content and converts it into code, which is
then executed to render synthetic images. Finally,
using the code as context, we prompt the LLM to
generate corresponding textual instructions.

In the following, we provide detailed explana-
tions of the rendering tools supported by CoSyn,
the tailored generation pipelines based on these
tools, our persona-driven approach to diversify con-
tent and styles, and the large-scale dataset of 400K
synthetic images generated by CoSyn.

Rendering Tools. We integrate various rendering
tools to generate diverse types of images, forming
the foundation of CoSyn’s ability for text-rich im-
age generation. For example, Matplotlib, Plotly,
and Vega-Lite are used to create different types of
charts. LaTeX and HTML are used for documents
and tables, while Mermaid and Graphviz generate
diagrams. We utilize SVG and Asymptote to cre-
ate vector graphics and math-related content. For
specialized tasks, we rely on Lilypond to generate
music sheets and RDKit for chemical structures.
We implement customized functions for each tool
to execute LLM-generated code and obtain corre-
sponding rendered images. These tools collectively
enable CoSyn to produce a wide range of high-
quality, text-rich synthetic images.

Pipelines. We design 20 pipelines based on 11 ren-

3

https://matplotlib.org/
https://plotly.com/
https://vega.github.io/vega-lite/
https://mermaid.js.org/
https://graphviz.org/
https://asymptote.sourceforge.io/
http://lilypond.org/
https://www.rdkit.org/


68K Math Problems

73K Documents 118K Charts

36K Diagrams48K Tables

M

us
ic

Diagram

CoSyn

400K

Chart
D

oc
ument

M
a
th

T

able Gra
p
h
ic

s

…

12K Music 

Sheets

10K Circuits 9K Chemical 

Structure

28K Vector Graphics

Figure 3: Our CoSyn-400K dataset consists of 9 categories of text-rich images with 2.7M instruction-tuning data.
More qualitative examples, along with question-answer annotations, are available in Figure 12 -18 in Appendix C.

dering tools.1 Each pipeline follows the same pro-
cedure: (1) Topic generation to define the theme of
this synthetic example, (2) Data generation to pop-
ulate the detailed contents, (3) Code generation to
create executable code that renders the image, and
(4) Instruction generation conditioned on code to
produce instructions, including questions, answers
and explanations for chain-of-thought reasoning.
Each stage is controlled by a prompt customized for
image category and rendering tool. Figure 8 shows
all prompts of the HTML Document pipeline.
Use personas for diversity. LLMs often strug-
gle to generate diverse synthetic data using sam-
pling parameters alone (Yu et al., 2023), with bi-
ases leading to repetitive outputs across different
runs. Recent work (Ge et al., 2024) shows that
incorporating personas in prompts can improve di-
versity by enabling models to generate from varied
perspectives. CoSyn adopts personas to enhance
diversity during the Topic Generation stage. Each
persona is a short sentence describing a personality
or identity. For example, as shown in the middle
of Figure 2, we sample a persona “a sci-fi novelist
who likes alien worlds”, which results in a topic of
“a novel about Extraterrestrial Flora & Fauna” for
generating the book cover image. We use the 200K
personas released by Ge et al. (2024).
Implementation details. CoSyn is built on the
DataDreamer library (Patel et al., 2024), which
supports robust multi-stage synthetic data genera-
tion pipelines that are easy to maintain, reproduce,
and extend. DataDreamer documents the prompts
and parameters used at each generation stage and

1Some tools are used in multiple pipelines, e.g., HTML is
used for generating documents, tables, and charts.

implements several efficient techniques, such as
parallel generation and response caching, to op-
timize performance. For the data and code gen-
eration stages, we use Claude-3.5-Sonnet, which
performs well in coding tasks (Anthropic, 2024b).
For instruction-tuning data generation, we select
GPT-4o-mini (OpenAI, 2023) for its cost efficiency.

CoSyn-400K. As shown in Figure 3, we use CoSyn
to generate a large-scale synthetic dataset of 400K
images across nine categories: charts, documents,
math problems, tables, diagrams, vector graphics,
music sheets, electrical circuits, and chemical struc-
tures. Since CoSyn is controlled via language in-
puts, it can easily generate diverse, fine-grained im-
age types by varying the input queries. For instance,
we use over 100 queries to generate document data
covering receipts, resumes, meal plans, etc. Some
queries used for CoSyn-400K are provided in Ap-
pendix A.3. This ensures that our dataset covers
a broad range of domains. The following sections
validate how our synthetic datasets enhance the
ability of VLMs to understand text-rich images.

5 Experimental Setup

Our experiments aim to verify the value of our
synthetic data in the supervised fine-tuning stage
of training vision-language models. This section
introduces the architecture of our model, training
strategy, datasets we used, baselines for compari-
son, and other details on implementation.

Model Architecture. We follow the same image
preprocessing and architecture as Molmo (Deitke
et al., 2024), which uses the MLP layer to con-
nect the vision encoder and a pretrained LLM. We
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Model ChartQA DocVQA InfoVQA TableVQA AI2D TextVQA ScreenQA Average

GPT-4V 78.1 87.2 75.1 60.5 89.4 78.0 41.6 72.8
Gemini 1.5 Flash 85.4 89.9 75.3 72.6 91.7 78.7 40.1 76.2
Claude-3 Opus 80.8 89.3 55.6 70.0 88.1 67.5 39.8 70.2

PaliGemma-3B† 71.4 84.8 47.8 46.4 73.3 76.5 32.2 61.8
BLIP-3-4B† 60.0 61.4 31.5 24.3 74.2 71.0 26.2 49.8
Cambrian-7B† 73.3 77.8 41.6 40.6 73.0 71.7 44.4 64.2
LLaVA-1.5-7B†∗ 17.8 28.1 25.8 33.1 55.5 58.2 17.6 33.7
LLaVA-Next-8B† 69.5 78.2 43.8 43.9 71.6 65.3 34.2 58.1
LLaVA-OneVision-7B† 80.0 87.5 68.8 64.6 81.4 78.3 46.3 72.4
Pixtral-12B 81.8 90.7 50.8 67.0 79.0 75.7 39.4 69.2
Llama 3.2 11B 83.4 88.4 63.6 51.1 91.9 73.1 87.7 77.0

Ours (7B)† 86.3 90.0 70.5 65.8 91.9 82.0 80.1 80.9
Ours (7B-zero-shot)†∗ 80.8 82.9 59.8 64.9 83.9 72.7 78.1 74.7

Table 1: Results on 7 text-rich benchmarks. The result of the best-performing open-source model is bold, and the
second-best is underlined. Models with † stand for open data and code for multimodal training. Models with ∗ are
zero-shot models, which means the models are not trained on instances from any of the evaluation datasets.

choose OpenAI’s CLIP (ViT-L/14 336px) (Radford
et al., 2021) as the vision backbone and Mistral-7B
(Jiang et al., 2023) as the language model.
Training Process. We adopt the same training
strategy as Molmo (Deitke et al., 2024), which
consists of two stages: (1) Pre-training on dense
captions from PixMo-Cap and (2) Supervised fine-
tuning on three categories of datasets below:
• Evaluation Datasets. We evaluate our model on

seven text-rich benchmarks, including ChartQA
(Masry et al., 2022), DocVQA (Mathew et al.,
2021), InfographicVQA (Mathew et al., 2022),
TableVQA-Bench (Kim et al., 2024), AI2 Dia-
grams (Kembhavi et al., 2016), TextVQA (Singh
et al., 2019), and ScreenQA (Baechler et al.,
2024). We adopt their official metrics for cal-
culating performance. In total, we have 138K
training images from the evaluation datasets.2

• Auxiliary Datasets. We select additional aca-
demic datasets for fine-tuning: VQAv2 (Goyal
et al., 2017), GQA (Hudson and Manning, 2019),
OK-VQA (Marino et al., 2019), OCR-VQA
(Mishra et al., 2019), A-OKVQA (Schwenk et al.,
2022), ScienceQA (Lu et al., 2022), TabMWP
(Lu et al., 2023), ST-VQA (Biten et al., 2019),
TallyQA (Acharya et al., 2019), DVQA (Kafle
et al., 2018), FigureQA (Kahou et al., 2017), and
PlotQA (Methani et al., 2020). The auxiliary
datasets contain around 1M training images.

• Synthetic Datasets. As introduced in Sec 4 and
also shown in Figure 3, our synthetic datasets
include 400K text-rich images from 9 categories.

Our best-performing model uses all three cate-
2TableVQA is an eval-only benchmark (no training split),

and we do not use the training split from ScreenQA.

gories of datasets above. We also trained a zero-
shot model using only auxiliary and synthetic data
without any examples from the evaluation datasets,
which still exhibits competitive benchmark perfor-
mance, as shown in the last row of Table 1.
Baselines. We compare recent open-source VLMs
with a similar scale (7B), including PaliGemma-3B
(Beyer et al., 2024), BLIP-3-4B (Xue et al., 2024),
Cambrian-7B (Tong et al., 2024), LLaVA-1.5-7B
(Liu et al., 2023), LLaVA-Next-8B (Liu et al.,
2024), LLaVA OneVision-7B (Li et al., 2024),
Pixtral-12B (Agrawal et al., 2024), Llama 3.2 V
(Meta, 2024). We also include proprietary models:
GPT-4V (OpenAI, 2023), Gemini-1.5-Flash (Team,
2024), and Claude-3 Opus (Anthropic, 2024a).
Implementation Details. We train our model on
TPU v3-128 with a batch size of 32. Our best-
performing model is trained for 60K steps, taking
about 30 hours. The checkpoints with the highest
validation performance are retained for testing.

6 Results

This section covers (1) the competitive perfor-
mance of the model trained on our synthetic data
(Sec 6.1), (2) the comprehensive analyses to high-
light the benefits of synthetic data (Sec 6.2), and
(3) the effectiveness of synthetic pointing data in
improving VLMs for web agent tasks (Sec 6.3).

6.1 Main Results
Table 1 compares our model’s performance with
both open and closed models across seven text-rich
benchmarks. On average, our 7B model achieves
the highest performance, surpassing the second-
best model (Llama 3.2 11B) by 3.9%. Notably, our
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Figure 4: Ablation on training data selection. Aux,
Syn, and Eval stand for auxiliary, synthetic, and evalua-
tion datasets, respectively. We report the average score
on eight benchmarks. The detailed performance break-
down on each benchmark is in Table 7.

model ranks first in four out of the seven datasets
and second in the remaining three. More surpris-
ingly, our zero-shot model (the last row in Table 1)
outperforms most open and closed models without
exposure to any training instances from the evalua-
tion datasets. In contrast, these competing models
often rely on benchmark training data and are thus
not true zero-shot models. This result demonstrates
that the capabilities learned from our synthetic data
can transfer effectively to downstream tasks.

6.2 Analysis
In the following experiments, we quantify the con-
tribution of synthetic data to the benchmark perfor-
mance by ablating the combinations of fine-tuning
datasets. Then, we demonstrate that our CoSyn
system can efficiently assist VLMs in generalizing
to novel tasks. Finally, we show that synthetic data
can help mitigate the overfitting of biases.
Synthetic data boosts the performance. Table
4 presents an ablation study on the choices of su-
pervised fine-tuning data. In the zero-shot settings,
when the model is trained on auxiliary datasets
(over 1M training images not directly from the
evaluation tasks), it fails to generalize effectively
to the evaluation tasks, with a substantial perfor-
mance gap of 14.1% below GPT-4V. However, us-
ing only 400K synthetic samples achieves a perfor-
mance comparable to GPT-4V. Our best zero-shot
model surpasses GPT-4V when jointly training syn-
thetic and auxiliary data. Under the supervised
settings, training with in-domain data alone yields
strong performance. However, adding 1M auxiliary
samples provides a modest improvement of 1.4%,
while incorporating synthetic data results in a more
significant 3.6% boost. These results demonstrate
the effectiveness of synthetic data in enhancing
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Figure 5: Zero shot performance on NutritionQA.
The x-axis denotes the number of training examples
used for the instruction-tuning stage. The models on the
upper left side demonstrate better data efficiency.

VLMs’ performance on text-rich tasks.

Zero-shot Generalization on a Novel Task.
Vision-language models typically rely on in-
domain data to perform well on specific tasks.
When encountering a novel task, such as answering
questions about nutrition labels in Figure 1, mod-
els without seeing similar examples during training
may struggle with this novel task. However, our
CoSyn system enables controllable data generation.
Given the task name as input, CoSyn can generate
task-specific data to fine-tune the model.

To validate this, we annotated a small evaluation
dataset called NutritionQA, which includes 100
examples of questions about photos of nutrition
labels. Some questions require multi-hop reason-
ing, as Figure 10 illustrates. We evaluated GPT-4V
and several open-source VLMs on this dataset and
report the performance in Figure 5. The x-axis in
Figure 5 represents the amount of data used during
the instruction fine-tuning stage.

Despite being trained on millions of images,
we observe that open-source VLMs are not data-
efficient and perform poorly on this novel task
compared to GPT-4V. Although many open-source
VLMs claim to achieve GPT-4V-level performance,
they fall short when tested on new tasks in the wild.
Without synthetic data, our model (Eval + Aux)
achieves results similar to those of open models.
However, when trained on 400K synthetic samples,
our model matches GPT-4V’s performance.

More impressively, we used CoSyn to generate
7K synthetic nutrition label samples and fine-tuned
the model using only this 7K data. The resulting
model outperforms most open-source VLMs on the
NutritionQA task. These results demonstrate that
code-guided synthetic data is an effective and effi-
cient method for adapting VLMs to new domains.
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Synthetic Data for Chain-of-Thought Reason-
ing. Existing text-rich datasets, such as ChartQA
(Masry et al., 2022), are typically annotated with
short answers. However, questions like “Compute
the mean of the data in the plot” require step-by-
step mathematical reasoning to arrive at the correct
answer. Models trained only with short-answer su-
pervision may fail to learn proper plot comprehen-
sion, but instead overfitting to annotation biases in
these datasets. On the contrary, our CoSyn-400K
includes explanation text alongside the short an-
swer. Each instruction-tuning example consists of
a (question, explanation, short answer) triplet, en-
abling models to learn chain-of-thought (CoT) rea-
soning. During fine-tuning, we design two prompt
templates for our synthetic data:

CoT Prompt: <Question> Provide reasoning
steps and then give the short answer.

<Explanation> Answer: <Answer>

Short Answer Prompt: <Question> Answer

with as few words as possible. <Answer>

Those prompts allow VLMs to switch between
the two answering styles and perform CoT reason-
ing when necessary. Figure 6 shows that incor-
porating CoT reasoning improves performance on
ChartQA, TableVQA, and NutritionQA, as these
datasets contain examples requiring multi-hop rea-
soning. However, we observe that adding CoT
reasoning reduces performance on DocVQA and
InfoVQA. We find this decline is caused by an-
swer biases in these benchmarks. Specifically, the
ground-truth answers favor short responses, often
penalizing more detailed and verbal responses. For
instance, in DocVQA, the ground-truth for an ex-
ample is “T-Th”, whereas the model responds with
“Tuesday to Thursday”. Although the response is

Machine
Generated

Human
Annotated

Training Testing

26.1

73.9 50.0

50.0

ChartQA Average Machine Human ∆ ↓

PaliGemma-3B 71.4 88.5 54.2 34.3
ChartPali-5B 77.3 93.7 60.9 32.8

Ours (w/o Syn) 81.4 92.2 70.4 21.8
Ours (w/ Syn) 86.3 93.4 79.1 14.2

Table 2: Results on human and machine-generated
questions of ChartQA. The pie charts above display the
percentage distribution of two question types in training
and testing. ∆ (↓ lower is better) denotes the perfor-
mance gap between human and machine questions.

correct, the strict string-matching metric assigns
it a zero score. This highlights key limitations of
current multimodal benchmarks, including answer-
ing biases and rigid evaluation metrics that fail to
capture the full extent of a model’s capabilities.

Synthetic Data for Mitigating Biases. Our previ-
ous experiments reveal answering biases in multi-
modal benchmarks, which VLMs trained solely on
these datasets often inherit. To further validate this
issue, we analyze ChartQA and observe a distribu-
tion shift in question types. As shown in the pie
charts above Table 2, some ChartQA questions are
human-annotated, while others are generated by
the language model T5 (Raffel et al., 2020), which
is heavily influenced by prompt phrasing and lim-
ited to a fixed set of question templates. During
training, most questions (73.9%) in ChartQA are
machine-generated, while the test set contains an
even distribution of human-annotated and machine-
generated questions. Models trained exclusively on
ChartQA tend to overfit to T5-generated questions.
Table 2 illustrates this issue: PaliGemma (Beyer
et al., 2024) and ChartPali (Carbune et al., 2024b)
achieve high accuracy on machine-generated ques-
tions but experience a significant performance drop
of over 30% on human-annotated questions.

Similarly, without synthetic data, our model
shows a noticeable 21.8% gap between the two
question types. However, incorporating synthetic
data during training reduces this gap to 14.2%, im-
proving the model’s ability to answer human-asked
questions. This suggests that synthetic data can
mitigate overfitting on benchmarks and enhance
VLMs’ usability in real-world applications.
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(b) Real Screenshot Pointing

Q: Click the View All button.

(a) Synthetic Pointing Data Generation

LLM VLM

Source Code Edited Code

Question: Point to the Help button.

<!DOCTYPE html> 

<body>

</body> 

</html>

<!DOCTYPE html> 

<body>

</body> 

</html>

Answer: x = 90  y = 70
Extract Coordinates

Figure 7: The overview of enabling VLMs to point through synthetic data. (a) We synthesize pointing data by
prompting an LLM to generate pointing questions and edit the code to draw the answer points explicitly. (b) We
demonstrate that the VLM trained on synthetic pointing data can be generalized to real agentic tasks.

6.3 Synthetic Pointing Data
Pointing enables vision-language models to answer
questions by providing specific points on images.
This functionality allows models to ground their
responses in visual content and interact with envi-
ronments, which is crucial for developing digital
agents. We find that we can synthesize pointing
data using our code-guided generation system.

Method. Since we have access to the source code
for all generated images, we can prompt an LLM
to modify the code to draw points on the images
explicitly. As illustrated in Figure 7, we feed the
image’s source code as context to the LLM, which
generates a pointing question and edits the code to
draw points with a predefined color. By extracting
the pixel values of these points, we can obtain their
exact (x, y) coordinates.3 We then use this point-
ing data to train VLMs, enabling them to answer
questions by providing point coordinates. In total,
we generate pointing data for 65K synthetic images.
Figure 19 shows some qualitative examples from
our synthetic pointing dataset.

Setup. We evaluate pointing ability on ScreenSpot
(Cheng et al., 2024), where the task requires mod-
els to provide the correct click location based on a
given instruction. ScreenSpot contains screenshots
from mobile phones, desktops, and web pages. To
assess the effectiveness of our synthetic pointing
data, we compare it to the model trained on PixMo-
point (Deitke et al., 2024), which consists of 155K
human-annotated images. Our best-performing
model uses both PixMo-point and synthetic point-
ing data. Additionally, we compare against exist-
ing methods like CogAgent (Hong et al., 2024),
SeeClick (Cheng et al., 2024), and UGround (Gou
et al., 2024), which is trained on 1.3M screenshots.

3The coordinates of points are normalized to (0, 100) to
mitigate the influence of image resolution.

Mobile Desktop Web Avg

Model Text Icon Text Icon Text Icon

GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.3
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 47.4
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 53.4
UGround 82.8 60.3 82.5 63.6 80.4 70.4 73.3

Synthetic 90.8 53.3 78.4 58.6 80.0 47.1 68.0
Human 84.2 59.0 88.1 52.9 76.5 50.5 68.5
Combined 89.0 65.1 87.6 65.7 83.0 58.7 74.9

Table 3: Click accuracy on ScreenSpot. We report
our models trained on different pointing data. Human
stands for using the human-annotated data from PixMo-
point (Deitke et al., 2024). Combined means combining
human-annotated data with our synthetic pointing data.

Results. Table 3 compares the click accuracy of
our models with previous methods. Using 65K
synthetic pointing samples, our model achieves
performance comparable to the one trained on
155K human-annotated samples. When combin-
ing synthetic and human data, our model achieves
state-of-the-art performance on ScreenSpot, sur-
passing the recent UGround (Gou et al., 2024),
which was trained on 1.3M screenshots. These re-
sults demonstrate that synthetic pointing data is a
data-efficient approach for improving VLM perfor-
mance on agentic tasks involving click prediction.

7 Conclusion

In this work, we introduced CoSyn, a framework
for generating synthetic data that significantly en-
hances VLM performance on text-rich image under-
standing. Our comprehensive analysis highlights
the advantages of synthetic data for domain gen-
eralization, data efficiency, and bias mitigation.
Our work demonstrates that the coding capabili-
ties of text-only LLMs can effectively assist multi-
modal learning and unleash the potential of vision-
language models for real-world applications.
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Limitation

The effectiveness of synthetic data depends heav-
ily on the quality and diversity of the prompts and
rendering pipelines used for data generation. For
highly specialized or underrepresented domains,
generating sufficiently diverse data remains chal-
lenging and may require careful prompt engineer-
ing or additional customization of rendering tools.
Targeted synthetic data generation may be essential
for certain tasks to achieve adequate performance,
and ensuring relevance and coverage still requires
domain-specific expertise. Synthetic data also may
not fully capture the complexity of real-world data
in some scenarios. Therefore, improving the diver-
sity and realism of synthetic data to better support
models in highly variable or evolving domains is a
reasonable avenue for future research. Finally, our
current synthetic data is limited to English and may
require further extension for multilingual support.

Ethical Statement

To the best of our knowledge, this work presents
no significant ethical concerns. We note, however,
that the use of synthetic data can propagate biases
present in the generation model used. Conversely,
synthetic data can also help mitigate biases and
expand coverage, as demonstrated in this work, by
greatly expanding the domains present in vision-
language instruction-tuning training data to yield
stronger generalized performance.

Acknowledgement

This work was done during Yue Yang’s intern-
ship at the PRIOR team of Ai2. This research
is supported in part by the Office of the Director
of National Intelligence (ODNI), Intelligence Ad-
vanced Research Projects Activity (IARPA), via the
HIATUS Program contract #2022-22072200005,
and the Defense Advanced Research Projects
Agency’s (DARPA) SciFy program (Agreement
No. HR00112520300), and gifts from the UPenn
ASSET center and Ai2. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, DARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes,
notwithstanding any copyright annotation therein.

References
Manoj Acharya, Kushal Kafle, and Christopher Kanan.

2019. TallyQA: Answering complex counting ques-
tions. In AAAI.

Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna,
Devendra Chaplot, Jessica Chudnovsky, Saurabh
Garg, Theophile Gervet, Soham Ghosh, Amélie
Héliou, Paul Jacob, et al. 2024. Pixtral 12b. arXiv
preprint arXiv:2410.07073.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, et al. 2022. Flamingo: a visual language
model for few-shot learning. In NeurIPS.

Anthropic. 2024a. The claude 3 model family: Opus,
sonnet, haiku.

Anthropic. 2024b. Introducing the next generation of
claude.

Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi,
Amanpreet Singh, Joseph Chee Chang, Kyle Lo,
Luca Soldaini, Sergey Feldman, Mike D’arcy, et al.
2024. Openscholar: Synthesizing scientific litera-
ture with retrieval-augmented lms. arXiv preprint
arXiv:2411.14199.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir
Zubach, Hassan Mansoor, Vincent Etter, Victor
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A Implementation Details

A.1 Prompts

We provide the prompt templates in Figure 8 for
the HTMLDocumentPipeline as an example to il-
lustrate the prompts used across our code-guided
synthetic data generation pipelines.

Topic Generation: You are an expert in document generation and
have a broad knowledge of different topics.
My persona is: “PERSONA” I want you to generate NUM_TOPICS
topics for FIGURE_TYPE that I will be interested in or I may see
during my daily life given my persona.
Here are the requirements:
1. Each topic is a high-level summary of the contents in FIG-
URE_TYPE with some design details, e.g., "the utility bill for the
month of January 2022 with a detailed breakdown of charges".
2. The topics should be diverse to help me generate varied docu-
ments. Each topic should be unique and not overlap with others.
3. The topics are conditioned on the document type. Please ensure
the topics you provided can be best visualized in "FIGURE_TYPE".
4. All topics must be in English, even if the persona is non-English.
5. List NUM_TOPICS topics for "PERSONA" and separate them
with a | character, e.g., topic1 | topic2 | ...... | topicN.
Do not include any additional text at the beginning or end of your
response.

Data Generation: You are an expert in content creation and have
broad knowledge about various topics.
My persona is: "PERSONA" I need some materials about "TOPIC",
which can be used to generate a FIGURE_TYPE.
Here are the requirements:
1. The materials should be related to the topic and customized
according to my persona. Its structure must be suitable for the
FIGURE_TYPE.
2. The materials should be realistic, and the contents should be
named using real-world entities. Do not use placeholder names like
xxA, xxB, etc. Do not use template data like [Name], [Date], etc.
3. The materials should be diverse and contain information from
different aspects of the topic to ensure the document is informative.
4. Do not provide too many materials. Just provide key pieces of
information that are essential for a **one-page document.**
5. All materials must be in English, even if the persona is non-
English.
Please provide the materials in JSON format without additional text
at the beginning or end.

Code Generation: You are an expert web designer and are good
at writing HTML to create documents.
My persona is: "PERSONA" I have some materials about TOPIC
which can be used to generate a FIGURE_TYPE.
Here are the materials (JSON format):
<data> DATA </data>
Please use HTML and CSS to generate a FIGURE_TYPE using the
data provided.
Here are the requirements:
1. **Style Requirements**: Feel free to use any CSS framework,
libraries, JavaScript plugins, or other tools to create the document.
(1) Try to be creative and make the web page style, fonts, colors,
borders and visual layout unique with CSS. Taking persona, topic,
and document type into consideration when designing the docu-
ment.
(2) Select the appropriate design scale (e.g., margins, page size,
layout, etc) to ensure the information in the document is clear and
easy to understand, with no text overlapping, etc.
(3) **Do not make the page too long or too sparse.** All contents
should be in **one page**. This is very important.
2. **Code Requirements**:
(1) You need to hardcode the provided data into the HTML script to
generate the document. Be careful with the syntax and formatting
of the HTML.
(2) Put everything in one HTML file. Do not use external CSS or
JavaScript files.
3. **Output Requirements**: Put “‘html at the beginning and “‘ at the
end of the script to separate the code from the text.
Please don’t answer with any additional text in the script, your whole
response should be the HTML code which can be directly executed.

Instruction Generation: You are an expert in data analysis and
good at asking questions about documents. My persona is: "per-
sona" I want you to generate some question-answer pairs of a
FIGURE_TYPE about TOPIC, which I would ask. Instead of show-
ing the document, I provide the data and the code that generates
the document.
<data> DATA </data> <code> CODE </code>
Please come up with a list of *reasonable questions* that people will
ask when they see the rendered document. Here are the require-
ments:
1. **Question Types**: All questions should be short-answer ques-
tions that are answerable based on the visual information in the doc-
ument. All questions can be answered with a single word, phrase,
or number. (as short as possible)
(1) **Information Retrieval questions** ask for specific information
in the document, such as numbers, names, dates, titles, etc. The
questions should cover different aspects (areas) of the document.
This is the most common type of question.
(2) **Reasoning questions** require reasoning over multiple informa-
tion in the document. These questions should be more challenging
and require a deeper understanding of the document.
(3) **Document Type-specific questions** are questions that are
specific and unique to this document type FIGURE_TYPE. These
questions should be tailored to the content and structure of the
document.
2. **Response Format**: Use | to separate the question, explanation,
and concise answer for each example.
(1) Follow this format: question | explanation | concise answer, e.g.,
what is the total revenue? | The total revenue is the sum of all
revenue sources in the document, which is $2000 + $3000 + $5000
= $10000. | $10000
(2) Separate the question-answer pairs by double newlines. ques-
tion1 | explanation1 | answer1
question2 | explanation2 | answer2...
(3) Do not provide too many questions, 5-10 questions are enough.
Focus on the diversity and quality of the questions. Try to cover
different aspects of the document.
(4) The concise answer should be as short as possible and directly
answer the question. The answer should be faithful and exactly
the same as what you would expect to see in the document, don’t
rephrase it. All words in the answer should be processed in natural
language, no coding terms/characters.
Please follow the format strictly and do not include any additional
text at the beginning or end of your response.

Figure 8: Prompt templates used for HTML Document
Pipeline, including all four stages of generation: topic,
data, code, and instruction.

A.2 Rendering Tools and Pipelines

We design 20 generation pipelines built on 11 ren-
dering tools to support the creation of nine cate-
gories of text-rich images:(1) Charts: Matplotlib
VegaLite, Plotly, LaTeX, HTML; (2) Documents:
LaTeX, HTML; (3) Tables: LaTeX, Matplotlib,
Plotly, HTML; (4) Diagrams: Graphviz, LaTeX,
Mermaid; (5) Math Problems: LaTeX; (6) Vector
Graphics: SVG, Asymptote; (7) Music Sheets:
LilyPond; (8) Electrical Circuits: LaTeX; (9)
Chemical Structures: Rdkit. In addition, we im-
plement a separate pipeline for generating pointing
data using HTML as the rendering tool.

A.3 Queries to Construct CoSyn-400K

Since CoSyn accepts textual queries to control data
generation, we use a diverse set of queries for each
type of text-rich image to ensure broad domain
coverage. Below are some examples of the queries
used to generate CoSyn-400K:
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• Charts: Bar, Line, Pie, Diverge bar, Bubble,
Scatter, Histogram, Area, Box plot, Heatmap, Er-
ror bar, Radar chart, Rose chart, Stem plot, Stairs
plot, Violin chart, 2D contour, Distplots, Log
plot, Ternary plots/contour, Candlestick charts,
Time series, etc. (51 queries in total)

• Documents: Letter, Form, Report, Receipt,
Invoice, Restaurant menu, Newsletter, Sched-
ule, Manual, Brochure, Transaction document,
Agenda, Memo, Financial report, Telephone
records, Note, Budget, Meeting minutes, Bill,
Catalog, Email, Fax, Policy document, Resume,
Infographics, Process infographic, Statistical in-
fographic, etc. (107 queries in total)

• Math Problems: Algebra, Counting, Probability,
Geometry, Number theory, Precalculus, Prealge-
bra, Intermediate Algebra, Statistics, Functions,
Complex numbers, Logarithms, Inequalities, Lin-
ear equations, Exponents, Series, College Alge-
bra, Calculus, Advanced calculus, Linear algebra,
Solid geometry, Analytic geometry, Polynomial
arithmetic, etc. (110 queries in total)

• Tables: Financial table, Simple table, Pivot table,
Comparison table, Timeline table, Decision table,
Truth table, Lookup table, Periodic table, Statis-
tical table, Timetable, Hierarchical table, Matrix
table, Contingency table, Logarithmic table, Cor-
relation table, etc. (35 queries in total)

• Diagrams: Flow chart, Directed graph, Undi-
rected graph, Decision tree, Mind map, Gantt
charts, Finite state machine, Quadrant chart,
Chord diagrams, Network diagrams, Sankey di-
agram, Entity relationship diagram, Sequence
diagrams, Bottom-up flow chart, Timeline, State
diagram, Concept map, Family tree, Program-
ming flowchart, etc. (34 queries in total)

• Vector Graphics: Visual intelligence test, Spa-
tial intelligence test, Geometry, Solid geom-
etry, Analytic geometry, Polynomial graphs,
Trigonometry, Polar coordinates, Coordinate sys-
tem, Topology, Graph theory, Plane geometry,
Functions, Calculus, Vectors, Angles, Perimeter
and area problems, etc. (36 queries in total)

• Sheet Music: Classical, Pop, Rock, Jazz,
Blues, Hip Hop, Rap, Electronic, Country, Folk,
Rhythm and blues, Soul, Reggae, Metal, Punk,
Theme, Dance, etc. (34 queries in total)

• Electrical Circuits: Series, Parallel, Hybrid,
Household appliances, Industrial appliances, Mo-
bile device, Low-power appliances, High-power
appliances, etc. (30 queries in total)

• Chemical Structures: Drug, Organic, Inor-

ganic, Protein, Acids, Bases, Gases, Liquids,
Solids, Oxidizers, Flammable liquids, Toxic
chemicals, Hazardous chemicals, Aromatic com-
pounds, Aliphatic compounds, Polymers, Metals,
Alloys, Electrolytes, etc. (100 queries in total)

A.4 Academic Datasets

During the supervised fine-tuning stage, we in-
clude academic datasets in addition to our synthetic
datasets. Below, we provide details on the size of
these datasets and the evaluation metrics used.

Dataset Size. The number in parentheses indicates
the number of training images for each dataset:
ChartQA (28.3K), DocVQA (39.5K), Infograph-
icVQA (23.9K), AI2 Diagrams (11.4K), TextVQA
(34.6K), VQAv2 (82.8K), GQA (72.1K), OK-VQA
(9.0K), OCR-VQA (166.0K), A-OKVQA (17.1K),
ScienceQA (6.2K), TabMWP (23.1K), ST-VQA
(18.9K), TallyQA (133.0K), DVQA (200.0K), Fig-
ureQA (100.0K), PlotQA (160.0K). We downsam-
ple some very large synthetic datasets, such as
DVQA, FigureQA, and PlotQA, to balance the
dataset size. In total, we use approximately 1.1M
images from academic datasets.

Evaluation Metrics. We adopt their official evalu-
ation metrics for the seven text-rich datasets. For
ChartQA, we use relaxed correctness, which al-
lows a 5% difference for float number answers.
For DocQA and InfoQA, we report Average
Normalized Levenshtein Similarity (ANLS). For
TableVQA, we report the average performance
across the four subsets (VTabFact, VWTQ, VWTQ-
Syn, FinTabNetQA) using the metrics provided
in this repo. We report the multiple choice accu-
racy for AI2D, VQA score (Goyal et al., 2017) for
TextVQA, and SQuAD F1 score (Rajpurkar et al.,
2018) for ScreenQA.

A.5 Training Details

Image Preprocessing. We adopt the same im-
age preprocessing as Molmo (Deitke et al., 2024),
where each input image is cropped into multiple
overlapping crops before being encoded by CLIP.
During training, we limit the maximum number of
crops to 12, but we increase it to 25 at testing time
to accommodate the high resolution of text-rich
images. This strategy boosts the inference perfor-
mance without increasing training costs.

Hyper Parameters. We set the maximum se-
quence length for training is 2304 tokens. We use
the same learning rate of 1e-6 for the MLP con-
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nector, LLM, and visual encoder, with batch size
32. The best-performing model is trained for 60K
steps with 200 warm-up steps and a cosine sched-
uler with an end factor of 0.1. All experiments are
run on a single TPU v3-128.

B Additional Analysis

We conduct additional analyses below to investi-
gate further why our synthetic data can effectively
enhance vision-language models.

Our synthetic data is more diverse. To quantify
the diversity of images and text in our synthetic
dataset D =

{
(I, T )

}
, we propose the following

two metrics to compute the diversity:

Diversity(D)Image =
1

|D|2−|D|
∑

Ii∈D
∑i ̸=j

Ij∈D
(
1− sim(Ii, Ij)

) (1)

Diversity(D)Text =
1

|D|2−|D|
∑

Ti∈D
∑i ̸=j

Tj∈D
(
1− sim(Ti, Tj)

) (2)

where sim(·) is the cosine similarity function. Both
metrics compute the average pairwise cosine dis-
tance between the features of every instance in
the dataset. For image diversity, we extract fea-
tures using CLIP, while for text diversity, we use
Sentence-BERT (Reimers, 2019) to obtain embed-
dings of question-answer pairs. Table 4 shows that
our synthetic charts are significantly more diverse
than those in existing datasets, such as FigureQA
and ChartQA, in both image and text diversity.

Dataset Image Diversity Text Diversity

FigureQA 0.268 0.567
DVQA 0.307 0.752
PlotQA 0.420 0.743
ChartQA 0.340 0.742
Ours (Charts) 0.596 0.823

Table 4: Compare image and text diversity across
different chart datasets. We randomly sample 10K
instances from each dataset to compute the results.

Diversity correlates with model performance.
We observe that data diversity significantly affects
model performance on downstream tasks. To in-
vestigate this, we compare synthetic chart data gen-
erated using only a single tool (Matplotlib) with
charts generated by all five tools available in our
CoSyn system. As shown in Table 5, using multiple
tools results in higher image diversity and notably
improved performance on ChartQA. This experi-
ment underscores the importance of data diversity
for enhancing the generalizability of models.

n. of Tools Diversity ChartQA

Average Machine Human

Single 0.572 73.9 66.5 81.5
Multiple 0.607 75.2 68.6 82.0

Table 5: Single vs. Multiple Rendering Tools for Data
Generation. Each row uses the same number of 45K
synthetic images. Single only uses Matplotlib, while
Multiple involves four other rendering tools: HTML,
LaTex, Plotly, and VegaLite.
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Figure 9: Scaling the Size of Synthetic Data. We eval-
uate the zero-shot performance on ChartQA of models
fine-tuned on increasing numbers of synthetic images.

Scaling the size of synthetic data. In addition
to diversity, the scale of synthetic data also im-
pacts model performance. As shown in Figure 9,
increasing the number of synthetic chart images
leads to improved performance on ChartQA. This
demonstrates that scaling up synthetic data can fur-
ther enhance VLMs on downstream tasks. Due to
resource constraints, our final dataset consists of
400K images, which cost us about $8,000. Future
work could explore scaling up the dataset size to
push the boundaries of synthetic data’s potential.

LLM for Data Generation ChartQA

Average Machine Human

GPT-4o 72.4 65.8 78.9
Claude-3.5-sonnet 77.2 71.0 83.8

Table 8: Compare the LLMs used for synthetic data
generation. For both LLMs, we create 100K synthetic
charts for fine-tuning the VLMs. We report the zero-
shot evaluation results on ChartQA.

Compare LLMs for synthetic data generation.
In the default setting, CoSyn uses Claude-3.5-
sonnet as the underlying LLM for code generation.
To highlight the importance of strong coding ca-
pabilities, we compare it with data generated by
GPT-4o. As shown in Table 8, synthetic data gen-
erated by Claude-3.5-sonnet yields significantly
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Prompt Type ChartQA DocVQA InfoVQA TableVQA AI2D TextVQA ScreenQA NutritionQA

CoT 86.3 87.4 63.8 65.8 86.0 70.9 79.0 76.0
Short Answer 83.1 90.0 70.5 64.3 91.9 82.0 80.1 62.0

Table 6: Alation of using chain-of-thought (CoT) in prompts. CoT means letting the model provide reasoning
steps before giving the final answer. Short Answer prompts the model to answer with as few words as possible.

FT Data ChartQA DocVQA InfoVQA TableVQA† AI2D TextVQA ScreenQA† Average

Aux only∗ 60.7 56.2 39.7 43.1 81.7 68.5 61.3 58.7
Syn only∗ 79.4 80.5 60.1 64.4 68.6 63.6 76.6 70.5
Aux + Syn∗ 80.8 82.9 59.8 64.9 83.9 72.7 78.1 74.7

Eval only 77.4 87.4 63.8 51.8 91.3 81.1 78.1 75.9
Eval + Aux 81.4 87.9 68.2 53.6 91.6 81.8 77.0 77.3
Eval + Aux + Syn 86.3 90.0 70.5 65.8 91.9 82.0 80.1 80.9

Table 7: Alation of the data selection for supervised fine-tuning. Aux, Syn, and Eval stand for auxiliary, synthetic,
and evaluation datasets, respectively. The rows with ∗ represent zero-shot models (without using any training
examples from any of the evaluation datasets). The datasets with † are test-only datasets (no training splits), which
means all numbers on these datasets are zero-shot performance.

better results than GPT-4o. Our qualitative observa-
tion reveals that GPT-4o has a higher failure rate in
code generation, particularly for less common cod-
ing languages or libraries. This result emphasizes
that a strong LLM is essential for the successful
synthetic data generation for VLMs.

Quantify the contributions of synthetic data. Ta-
ble 7 presents the performance across benchmarks
using different combinations of supervised fine-
tuning data. A clear trend shows that synthetic
data significantly contributes in both zero-shot and
supervised settings. Adding our synthetic data con-
sistently boosts performance on each benchmark.

The impact of Chain-of-thought reasoning. We
compare the performance of CoT and short-answer
prompts in Table 6. CoT reasoning improves perfor-
mance on ChartQA, TableVQA, and NutritionQA,
where questions require multi-hop and mathemat-
ical reasoning that aligns with the findings in lan-
guage tasks (Sprague et al., 2024). However, short-
answer prompts yield better results for the other
five datasets due to their annotation biases favoring
concise responses. CoT responses tend to be more
verbose, which may not match the ground-truth
answers exactly, resulting in a performance drop.

Document Pointing Task. To further validate
the effectiveness of our synthetic pointing data,
we introduce DocPointQA, a new pointing task
with 300 question-point pairs annotated from the
DocVQA validation set (Figure 11). We compare
models trained on human-annotated PixMo-point
data (155K examples), our synthetic pointing data
(65K examples), and their combination. Since

DocPointQA requires multiple-point answers, we
report precision, recall, F1 score, and L2 dis-
tance (lower is better) after mapping predicted
points to ground truth, following the same setup
as Molmo (Deitke et al., 2024). As shown in Ta-
ble 9, the model trained on our synthetic data out-
performs the one trained on PixMo-point. Perfor-
mance improves even further when both datasets
are combined, demonstrating the effectiveness of
synthetic data in enhancing the pointing capabili-
ties of vision-language models.

Pointing Data Precision Recall F1 Distance ↓

PixMo-point 49.7 49.3 52.7 17.3

Synthetic (Ours) 63.8 66.1 62.8 9.2
Combined (Ours) 69.9 70.6 70.7 8.8

Table 9: Zero-shot Pointing on DocPointQA. We
compare the models trained on different pointing data.
Combined stands for combining PixMo-point (human-
annotated) (Deitke et al., 2024) with our synthetic data.

C Qualitative Examples

Figure 10 and 11 show the examples from our an-
notated NutritionQA and DocPointQA. Figures 12
- 18 list examples from the 9 categories of synthetic
text-rich images. Figure 19 illustrates examples
from the synthetic pointing dataset.

Use of AI Assistants. We use AI to fix some typos
and grammar. Authors write all contents.
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Q: How many servings do I need to fulfill 

the daily value of Cholesterol? A: 2.

Q: I have taken 1000mg of sodium 

today. Can I eat this without exceeding 

the suggested daily value? A: No.

Q: How many capsules per 

container? A: 56.

Figure 10: Examples from our newly collected NutritionQA dataset.

Q: Help me find the total of owned 

and leased quota pounds. Q: Show me the total computed postage.

Q: Point out the total unsatisfactory hemoglobin 

levels for both males and females aged 13-16.

Figure 11: Examples from our newly collected DocPointQA dataset.

Q: Which neighborhood has the highest 

insurance premium? A: Malibu.

Q: Which land type has the smallest 

percentage of available land for 

development? A: Industrial Zones.

Q: How did the unemployment 

rates in the UK and EU compare 

in 2005? A: EU had higher.

Figure 12: Randomly selected examples from our synthetic chart data.
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Q: What is the 

total monthly 

budget for the 

marketing 

initiatives?

A: $2,700.

Q: What is 

the first 

step in the 

checklist? 

A: Initial 

Detection.

Q: What is one key 

indicator used in 

rehabilitation 

programs?

A: Recidivism rates

Figure 13: Randomly selected examples from our synthetic document data.

Q: Which year had the lowest sales for 

Interior Trim? A: 2020

Q: Which month had the highest customer 

foot traffic? A: December.

Q: What is the status of of 

Château de Chambord? 

A: Excellent.

Figure 14: Randomly selected examples from our synthetic table data.

Q: Give your solution to this math problem.

A: $a = 1$

Q: Can you 

answer this 

question?

A: 2

Figure 15: Randomly selected examples from our synthetic math data.
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Q: What steps are involved immediately 

before making a prediction?

A: Model Training and Prediction.

Q: What is the final outcome of the process illustrated 

in the diagram? A: Sleep Stage Classification.

Q: Which safety practice involves emergency 

contacts? A: Emergency Contacts.

Figure 16: Randomly selected examples from our synthetic diagram data.

Q: You estimate its height to be 100 meters and its base 

radius to be 150 meters. What is the volume of this 

volcanic cone in cm^3? A: $750,000\pi$ cm^3.

Q: What is the shortest total distance to 

visit all four stores, starting and ending at 

Store A? A: 23.48 units

Q: The turn has a angle of 33°, and the width of the track 

is 58 feet. What is the height difference between the 

inside and outside edges of the track? A: 38 feet

Figure 17: Randomly selected examples from our synthetic vector graphic data.

Q: What is the key 

signature of this music?

A: E major.
Q: What is the 

voltage of this 

circuit? A: 120V.

Q: What is the main use of 

menthol in throat lozenges?

A: Soothing effect.

Figure 18: Randomly selected examples from our synthetic sheet music, circuits and chemical structures.
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Q: Point out the page load 

time performance of the 

website, which indicates the 

site's speed optimization

A: (64.1, 73.7)

Q: Generate points for all issues where 

opposition exceeds 60%. 

A: (56.2, 61.1) (56.2, 81.4)

Q: Provide a point where users can toggle 

event notifications. A: (35.7, 76.9)

Q: Identify which logo represents FC 

Rosengård in this match. A: (22.1, 56.2)

Q: Point out the main title of the book. 

A: (50.0, 10.9)

Q: Highlight all services 

that cost more than $30. 

A: (88.7, 54.6) (88.6, 61.1)

Q: Show me the pasta icon 

for the Italian dish. 

A: (15.0, 26.3)

Q: Find Michael Jackson songs that are longer 

than 4 minutes. A: (9.8, 12.7) (9.8, 26.4)

Q: Point the button to submit application for the 

Senior Financial Data Analyst. A: (32.8, 25.5)

Figure 19: Randomly selected examples from our synthetic pointing data.
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