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Abstract

Entities and events are crucial to natural lan-
guage reasoning and common in procedural
texts. Existing work has focused either exclu-
sively on entity state tracking (e.g., whether a
pan is hot) or on event reasoning (e.g., whether
one would burn themselves by touching the
pan), while these two tasks are often causally
related. We propose CREPE, the first bench-
mark on causal reasoning of event plausibil-
ity and entity states. We show that most lan-
guage models, including GPT-3, perform close
to chance at .35 F1, lagging far behind hu-
man at .87 F1. We boost model performance
to .59 F1 by creatively representing events as
programming languages while prompting lan-
guage models pretrained on code. By injecting
the causal relations between entities and events
as intermediate reasoning steps in our repre-
sentation, we further boost the performance to
.67 F1. Our findings indicate not only the chal-
lenge that CREPE brings for language models,
but also the efficacy of code-like prompting
combined with chain-of-thought prompting for
multihop event reasoning.1

1 Introduction

Event-centric natural language processing (Chen
et al., 2021b) is one of the leading paradigms in
machine understanding of texts. This line of work
focuses on first extracting entities and events from
texts (Yang et al., 2019; Du and Cardie, 2020) and
then making inferences about them (Li et al., 2020;
Du et al., 2021). Even with the recent advances of
large language models (LLMs), reasoning about
events remains challenging as it requires highly
contextual information and ample common-sense
knowledge. For example, the event “adding water
to a pan containing hot oil” causes the event “there
is a sizzling sound” to happen, while “heat up an

∗Equal contribution.
1Data and code can be found at https://github.com/z

harry29/causal_reasoning_of_entities_and_events.

Figure 1: Example of our task CREPE. A procedure
including a goal and some steps are provided. A model
needs to predict the change in the likelihood of an event
throughout the procedure. We show that predicting en-
tity states as an intermediate step improves performance.

empty pan” does not. Any model that can draw the
correct conclusion given these contexts is expected
to have access to some implicit knowledge about
these entities and events.

One type of text which demonstrates these chal-
lenges is procedural text, namely sequences of
events, such as how-to instructions, recipes, nat-
ural processes, scientific protocols, etc. Procedural
texts describe an environment that changes dynam-
ically through a sequence of steps. Therefore, the
exact environment configuration is often implicit.
In the previous cooking example, whether “there is
a sizzling sound” depends on what steps have taken
place. With these interesting challenges coupled
with the added benefit of application to robotics
(Brohan et al., 2022) and household smart assis-
tants such as Alexa (Panagopoulou et al., 2022),
reasoning about procedures attracts great attention
from the NLP community (Zhang, 2022).

Most work on reasoning about procedural texts
has focused solely on either predicting the proper-
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ties of events (e.g., which event is more likely to
happen) (Zhang et al., 2020c; Yang et al., 2021b;
Tandon et al., 2019) or tracking entity states (e.g.,
what is some property of an entity after some step)
(Dalvi et al., 2018; Tandon et al., 2020), while
the causal relation between events and entities
is largely underexplored – for example, whether
“there is a sizzling sound” is determined by the
state of “water” and “oil.” Therefore, we claim that
many event prediction tasks are multihop reasoning
tasks that require the knowledge of intermediate
entity states. Causal reasoning about events and
entities differs from existing multihop reasoning
tasks, such as Yang et al. (2018); Dua et al. (2019)
whose reasoning process is explicitly formulated
by a direct question (e.g., how old is the previous
US president); and Geva et al. (2021) whose sup-
porting evidence is factual and static. In contrast,
causal reasoning in procedures requires models to
first figure out the relevant entity attributes, then
infer their states based on the current context, and
finally predict the event.

To this end, we propose the task of Causal
Reasoning of Entities and Events in Procedural
Texts (CREPE), with an overview in Figure 1.
Given a procedure consisting of a goal (“stir fry
vegetables”) and some steps (“rinse vegetable”...),
a model is to predict the likelihood of some un-
observed events (“there is a sizzling sound”) after
the execution of each step. We provide a hand-
crafted, high-quality benchmark containing 183
procedures, 1219 steps, and 324 changes in the
likelihood of events along with the corresponding
underlying entity state changes. In an in-context
learning setting, we show that most LLMs includ-
ing GPT-3 (Brown et al., 2020) perform no better
(.350 F1) than chance (.297 F1), greatly underper-
forming the human performance of .868 F1, on
the development set. Providing ground-truth entity
state changes to the prompt of GPT-3 shows no
performance gain, indicating that it cannot lever-
age this causal signal. Instead, we draw inspiration
from Madaan et al. (2022) who represented texts as
programming languages as the prompt to code lan-
guage model Codex (Chen et al., 2021a) to perform
event reasoning. We propose a novel Python code
representation of procedures that achieves .585 F1.
Furthermore, our code-like representation allows
us to effectively encode and leverage predicted or
labeled entity state changes by generating them as
an intermediate reasoning step (namely, chain-of-

thought), boosting the performance to .667 using
predicted entity state changes and .715 F1 using
labeled entity state changes.

Our contributions are summarized as follows:
• We propose a novel task, a dataset, and sev-

eral strong baselines for causal reasoning about
events and entities in procedural texts.

• We devise an effective code-like representation of
procedures, leading to superior performance and
allowing the injection of structured knowledge
for reasoning.

• We are among the first to show that code lan-
guage models can apply chain-of-thought to
tackle multihop reasoning.

2 Task and Hypothesis

A procedure P of length n consists of a goal G
and some steps s1 . . . sn ∈ S, each represented as
a short sentence. Each procedure is associated with
a set of hypothetical events e1 . . . em ∈ E whose
likelihood of happening changes throughout the
procedure. The task is to predict the change of
likelihood of a hypothetical event ej from step si−1

(the previous step) to step si (the current step):

δi = p (ej |si, . . . , s1, G)− p (ej |si−1, . . . , s1, G)

The likelihood change δi is positive if the label is
“more likely”, negative if “less likely”, or zero if
“equally likely”.

Predicting the likelihood of hypothetical events,
also known as counterfactual reasoning, is ex-
tremely important for machine reasoning (Pearl
and Mackenzie, 2018) (see more in Section 7). In
our work, we hypothesize that the causal relation
between entity changes and events can be lever-
aged by LLMs to better perform counterfactual
reasoning. In other words, any change of the like-
lihood of a hypothetical event is given rise to by
changes of some entity attributes a1 . . . am ∈ A.

δi = p(aj |si, . . . , s1, G)− p(aj |si−1, . . . , s1, G)

3 Dataset

Our CREPE benchmark dataset has two portions.
The first is handcrafted and cross-validated by six
authors of this paper. The annotation happens in
3 phases: (1) we first write down or acquire a pro-
cedure from the web; (2) we then annotate some
hypothetical events whose likelihood of happen-
ing changes throughout the procedure, and how
their likelihood change after each step; (3) for each



Data Statistics

Dev Test Total

Num. procedures 42 141 183
Num. steps 295 924 1219
Num. event changes 144 180 324
Avg. step per procedure 7.0 6.6 6.7
Avg. token per step 6.8 6.8 6.8

Procedure Topics

Dev Test Total

Recipe 10 33 43
Household 12 40 52
Craft 4 17 21
Technology 5 19 24
Travel 4 4 8
Sports 2 13 15
Others 5 15 20

Table 1: Statistics of the CREPE dataset.

event, we annotate a tuple of entity, attribute, and
change that causes the event likelihood change. To
obtain interesting and challenging data, we require
annotators to write procedures covering a diverse
range of topics and to prioritize events that undergo
multiple likelihood changes, and those that involve
information implicit from the steps. In our work,
we strictly use this portion as the development set
to inform all our experimental designs.

The second portion, designed to be drawn from
a different distribution to minimize bias, was anno-
tated by students in an Artificial Intelligence class
at the University of Pennsylvania who participated
in an extra-credit assignment. The students were
given an overview of the project and some guide-
lines to annotate data with the aforementioned crite-
ria. We carefully validated all resulting annotations
by discarding or editing erroneous and inappropri-
ate examples. In our work, we strictly use this
portion as the test set to evaluate the generalization
ability of our final models. The complete dataset
and annotation instructions can be found in our pub-
lic repository containing no personally identifiable
information of any annotator.

The statistics of CREPE are in Table 1. In this
work, we consciously focus on few-shot and in-
context settings because our data annotation in-
evitably contains bias and limitation, and thus can-
not be truly representative of counterfactual reason-
ing in every scenario. In such cases, we believe
having a sizeable training set aggravates such bi-
ases and induces spurious artifacts.

4 Event Likelihood Prediction

The task of CREPE is essentially ternary classifi-
cation, where the likelihood change of each event
after each step is labeled as one of “more likely”,
“less likely”, or “equally likely”. In this section, all
models have no access to the annotated entity state
changes until later sections.

4.1 Baselines

To show the challenge CREPE brings to existing
models, we first introduce some naive baselines.
• The chance baseline assigns random labels.
• The majority baseline always assigns the major-

ity label “equally likely”.
Next, we consider the following state-of-the-art

LLMs as strong baselines, where all models are
given exactly three examples in their prompt:
• T5 (Raffel et al., 2020) is one of the state-of-the-

art LLMs. Given the goal, steps, and question
formatted by a prompt template, we compare the
probability of generating “the answer is no|yes.”
We use T0-3B2 with 3 billion parameters.

• T0 (Sanh et al., 2022) is a variant of T5, fine-
tuned on a large set of downstream tasks with
natural language prompts. We adopt the same
inference process as T5 described above. We use
T0pp3 with 11 billion parameters.

• GPT-3 (Brown et al., 2020) is a series
of LLMs that excels at few-shot learn-
ing using the prompting mechanism. We
consider text-curie-001 (7B parameters),
text-davinci-002, text-davinci-003, and
ChatGPT (all 175B parameters). We use default
parameters with a temperature of 0 for determin-
istic predictions. An example of the prompt is
shown in Figure 2.

• GPT-3 finetuned on StrategyQA is a GPT-3
curie model finetuned with StrategyQA (Geva
et al., 2021), a dataset of factual multihop ques-
tions and their decomposition. StrategyQA is
similar to our task in that estimating the change
of event likelihood can also be decomposed into
sub-tasks of estimating the change of state of
related entities (Section 5.1).
Table 2 shows that all state-of-the-art LLMs

we have attempted achieve close-to-chance per-
formance on CREPE around 0.350 F1, whereas
text-davinci-003 and ChatGPT which are

2https://huggingface.co/t5-3b
3https://huggingface.co/bigscience/T0pp
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Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my
feet get wet by wearing the sneakers?
Answer: likely

Figure 2: Our GPT-3 prompt, which is typical for a
QA task. Each likelihood label is compared with the
previous one to get the label for the change.

known to be stronger at reasoning perform bet-
ter. Details about prompt formulation and experi-
mental results on prompt sensitivity are shown in
Appendix B and A.

4.2 Representing Procedures as Python Code

Codex (Chen et al., 2021a) is a variation of GPT-3
that was designed to be prompted with and to gener-
ate code, in addition to natural language texts. Re-
cently, Madaan et al. (2022) found that prompting
Codex with some structured representation such as
Python code. Inspired by this observation, we pro-
pose novel code representations of procedures and
hypothetical events. Among many possibilities we
experimented with, the representation with the best
empirical performance is described below, later
shown to greatly outperform all baseline models.
The representation is exemplified in Figure 3.

The procedure is represented as a class where
the goal G is the class name, followed by the steps
si as comments. Then, each step is defined as a
member function, in which the hypothetical events
ej are represented as objects with comments. Each
event object has an attribute “change” whose value
describes the change of the likelihood. During
inference, Codex is provided with the prompt in-
cluding three in-context examples and the current
procedure up to the definition of the “init” function
and predicts the definition of all step functions. Fi-
nally, we extract the assigned value of the “change”
attribute as the event likelihood change δi.

This prompt design effectively leverages the se-
mantic similarity between procedures with entity
states and functions with variables, by representing
texts as function identifiers and comments. We use
code-davinci-0024 with 175B parameters and
default hyperparameters with a temperature of 0.

4While OpenAI announced that text-davinci-002 is
based on code-davinci-002 (https://platform.opena
i.com/docs/model-index-for-researchers), we empiri-
cally find the former to perform worse with our code prompt
and thus only consider the latter with code prompt.

class Wash_Sneakers:
# Init
# Remove shoelaces
# Rinse
def __init__(self, event0):
self.event0 = event0 # My feet get

wet by wearing the sneakers.
def remove_shoelaces(self):
self.event0.change = "equally likely

" # My feet get wet by wearing
the sneakers.

def rinse(self):
self.event0.change = "more likely" #

My feet get wet by wearing the
sneakers.

Figure 3: Our best-performing Python code representa-
tion of a procedure and hypothetical events, for Codex.

4.3 Results

As CREPE is a ternary classification task, we re-
port the macro F1 score across the three classes.
As shown in Table 2, T5 and T0 perform only
slightly better (.343 and .336 F1) than chance (.297
F1). GPT-3, one of the most dominant models
across a variety of NLP tasks, is no better (.336
F1), whereas finetuning it on another multihop rea-
soning dataset StrategyQA does not bring about any
improvement (.341 F1). The latest GPT-3 models,
text-davinci-003 (.424 F1) and ChatGPT (.470
F1) which were released contemporarily with this
paper, greatly outperform their predecessors.

On the other hand, our code-representation of
events as the prompt to Codex greatly outperforms
all other models with .585 F1. As Codex is trained
on public Github code in addition to the internet
texts that GPT-3 is trained on, it is noteworthy that
Codex can effectively reason about texts with code-
like structures, for a procedure has many analogies
to a class in object-oriented programming.

4.4 Ablation Studies

To understand why the representation in our Codex
prompt is effective, we perform an ablation study
with various changes of the format to the represen-
tation, including:
• Remove steps comments in the beginning
• Remove event comments in step functions
• Use nested functions instead of a class
• Use flat variables to encode goals, steps, and

events (no hierarchical class functions)
Examples of these empirically inferior representa-
tions are shown in Appendix B. As seen in Table 3,
the hierarchical representation of procedures, steps,

https://platform.openai.com/docs/model-index-for-researchers
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Naive Large Language Models Human

Cha. Maj. T5 T0 GPT3C GPT3C+S GPT3D2 GPT3D3 ChatGPT Codex
(ours)

Params - - 3B 11B 13B 13B 175B 175B 175B 175B -

Dev .262 .297 .343 .336 .346 .341 .350 .424 .470 .585 .868
Test .251 .296 .343 .337 .356 .346 .533 .423 .462 .591 -

Table 2: Macro F1 of baseline models on the CREPE dataset. Human performance is not benchmarked on the test set
as we strictly hold out its labels during all experiments. GPT3C represents the text-curie-001 model. GPT3D2
represents the text-davinci-002 model with an abnormal performance on the test set that we have confirmed but
regrettably cannot explain. GPT3D3 represents the text-davinci-003 model. GPT3C+S represents the GPT-3
curie model finetuned on StrategyQA. All of the above models work with textual prompts. Codex represents the
code-davinci-002 model and works with our proposed code-like prompts.

Dev Test

Codex .585 .591
no step comments .377 .352
no event comments .576 .555
nested function .568 .572
flat variables .338 .341

Table 3: Macro F1 of the ablations of our Codex prompt.

and events as classes or nested functions is critical.
Besides, listing all the steps as comments helps,
mimicking a programmer’s textual explanation of
a class or a function.

5 Causal Reasoning with Entities

When a human tries to predict whether the event
“one would get burnt by touching a pan” is likely,
their reasoning process would first focus on some
entities in the question (e.g., “the pan”), then attend
to some attributes and states of that entity (e.g., the
temperature of the pan is hot), and finally draw a
logical conclusion (e.g., “the pan being hot means
one would get burnt by touching it.”) CREPE is
constructed precisely with this thought process in
mind. An entity-attribute-change tuple is annotated
along with each event likelihood change. In this
section, we study how to explicitly leverage the
intermediate information to assist the prediction of
event likelihood prediction.

5.1 Predicted Entity States as CoT
In CREPE, the task of predicting event likelihood
change can be seen as a case of multihop reason-
ing, where a model first decomposes the question
into some open-ended sub-questions, answer these
sub-questions, and aggregate them as a final an-
swer. LLMs can be prompted to perform chain-of-
thought (CoT) style reasoning (Nye et al., 2021;
Wei et al., 2022). Thus, we ask the question:

Q1. Can LLMs benefit from first predict-

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my
feet get wet by wearing the sneakers?
Answer: To get feet wet by wearing the
sneakers, the sneakers must be wet. In
the given context, the sneakers are wet.
Therefore, comparing to the previous step,
the likelihood change is "more likely".

Goal: Wash sneakers
Context: I remove shoelaces. I rinse.
Question: What is the likelihood that my
feet get wet by wearing the sneakers?
Follow up: Are the sneakers wet?
Intermediate answer: Yes
Follow up: Will my feet get wet by wearing
wet sneakers?
Intermediate answer: Yes
Answer: likely

Figure 4: Our GPT-3 prompt with intermediate ques-
tions, mimicking the CoT prompt (top) and the Self-Ask
prompt (bottom).

ing entity state changes, as a CoT, before
predicting event likelihood changes?

CoT with GPT-3. First, we prompt GPT-3 with
Wei et al. (2022)’s CoT paradigm and Press et al.
(2022)’s self-ask paradigm, both of which are
shown in Figure 4. While self-ask relies on search
engines for fact retrieval, we use LM generation in-
stead as most of our entity state tracking questions
are heavily context-dependent and unanswerable by
any search engine. When writing demonstrations
for few-shot learning, we impose the following
logic progression for the follow-up questions: (1)
initial followups shall ask questions on the state
of entities that are directly related to the event; (2)
followups following the entity state questions shall
ask for the logical relationship between the entity
states and the original event.



Naive LLMs CoT Large Language Models Human

Majority GPT-3 Codex GPT-3 + CoT GPT-3+self-ask Codex soft
(ours)

Codex hard
(ours)

Dev .297 .346 .585 0.359 .342 .624 .667 .868
Test .296 .356 .591 0.379 .345 .626 .609 -

Table 4: Macro F1 of chain-of-thought models on the CREPE dataset. GPT-3 + CoT|self-ask represents the
text-davinci-002 model prompted with the CoT or self-ask style prompt.

CoT Codex with Soft Entity Representation.
We modify our Codex prompt in Figure 3, so that a
sub-event is represented as a string variable whose
declaration and value assignments are right before
those of the hypothetical event. We refer to this
as a soft representation of entities (Figure 5). Dur-
ing inference, Codex is provided with the code up
to the step function header and predicts the entity
and event changes for every step function. Our
Codex model achieves the new best performance
of .624 F1, outperforming the same model without
predicted entities as CoT by .039 F1.

class Wash_Sneakers():
# Init
# Remove shoelaces
# Rinse
def init(self, event0, subevent0):
self.event0 = event0 # My feet get

wet by wearing the sneakers.
self.event0.subevent = subevent0 #

The sneakers are wet
def remove_shoelaces(self):
self.event0.subevent.change =
"equally likely" # The sneakers

are wet
self.event0.change = "equally likely

" # My feet get wet by wearing
the sneakers.

def rinse(self):
self.event0.subevent.change =

"more likely" # The sneakers are
wet

self.event0.change = "more likely" #
My feet get wet by wearing the

sneakers.

Figure 5: Our Codex prompt with a soft representation
of entity state changes as strings.

CoT Codex with Hard Entity Representation.
The two approaches above both softly represent the
intermediate entity state changes as texts, either
questions or statements. Here, LLMs are not en-
forced to generate intermediate reasoning steps that
contain entities and attributes. To answer Q1 more
precisely, we experiment with a hard entity repre-
sentation where the entity-attribute-change tuple is
explicitly baked into the Codex prompt as shown
in Figure 6. Here, each entity is represented as an

Dev Test

Majority .297 .296

GPT-3 CoT .342 .345
w/ gold entity changes .351 .380
Codex CoT .667 .609
w/ gold entity changes .715 .722

Human .868 -

Table 5: Macro F1 of GPT-3 and Codex with chain-of-
thought provided with gold entity state changes.

object with an attribute and assigned value. The
hard entity representation leads to a far superior
performance of .667 F1 on the development set but
generalizes worse on the test set with .609 F1.

class Wash_Sneakers():
# Init
# Remove shoelaces
# Rinse
def init(self, event0):
self.sneakers = Sneakers()
self.event0 = event0 # My feet get

wet by wearing the sneakers.
def remove_shoelaces(self):
self.event0.change = "equally likely

" # My feet get wet by wearing
the sneakers.

def rinse(self):
self.sneakers.wet = True
self.event0.change = "more likely" #

My feet get wet by wearing the
sneakers.

Figure 6: Our Codex prompt with a hard representation
of entity states as variables, attributes, and values.

To recap, we have shown that LLMs can be
prompted to exhibit a CoT that first predicts entity
state changes and then event likelihood changes.
Hence, our answer to Q1 raised at the beginning of
this subsection is ‘yes.’

5.2 Annotated Entity States as CoT

In the above section, we have shown how event
likelihood prediction can be improved by first hav-
ing the LLMs predict entity states as a CoT. These
experiments mimic a realistic setting where infor-



mation about entities is unavailable. However, in
some scenarios, the entity states may be provided.
For example, an embodied agent or a robot might
have a reliable component that tracks entities; some
practitioners might care about a small set of pro-
cedures in a narrow domain with annotated entity
changes; or, some event schemata containing entity
information could be used to predict unseen events.
Here, we try to answer the following question:

Q2. Can LLMs effectively leverage an-
notated entity state changes to better pre-
dict event likelihood changes?

Instead of having LLMs predict entity state
changes, we provide the annotated entity state
changes in the CREPE dataset to GPT-3 and Codex.
Doing so has the additional benefit of verifying that
entity state changes indeed causally benefit LLMs
in predicting events.

As shown in Table 5, our Codex representa-
tion with access to gold entity changes leads to
improved performance of .715 F1 on the devel-
opment set. In contrast, GPT-3 does not see any
gain. Hence, the answer to Q2 is ‘yes’ for the
code-trained LLMs but ‘no’ for standard LLMs.

5.3 Externally Predicted Entity States
As we will discuss further in Section 7, entity state
tracking is an established task in NLP with existing
datasets and models. We have now predicted entity
state changes using LLMs in a few-shot learning
setting. It is then natural to pose the question:

Q3. Do existing entity state tracking
models make predictions that lead to bet-
ter performance on CREPE?

Our definition of causal reasoning of events is di-
rectional since we consider entity state changes as
the cause of the change in event likelihoods. To
this extent, we incorporate OpenPI (Tandon et al.,
2020), the only open-domain entity state tracking
dataset in procedural texts, as a part of the pipeline.
In OpenPI, the input is a goal, a step, and the output
is tuples of an entity, a feature, and two attributes
before and after the execution of the step. For ex-
ample, after “heat the pan [step]“, “the temperature
[feature] of the pan [entity] is cool [attribute] be-
fore and hot [attribute] afterward.” While the origi-
nal paper proposed a GPT2 model (Radford et al.,
2019), we opt to finetune the superior GPT-3 Curie
model on its data. After the model makes a predic-
tion, we post-process it into the format of CREPE

by discarding the feature and producing two entity-
attribute-change pairs (e.g., pan-hot-“more likely”
and pan-cold-“less likely”). We provide Codex
with only the entity changes when the entity is
mentioned in the event. Further, to fit our prompt
in the context window of Codex, we provide Codex
with 5 entity state changes uniformly drawn from
a pool of candidate choices at every step. The re-
sulting OpenPI-prompted Codex gives a degraded
macro F1 score of 0.553 on the development set
and 0.496 on the testing set. Hence, our answer
to Q3 is ‘no,’ suggesting that existing entity state
tracking datasets may be insufficient for our causal
reasoning task.

6 Performance Analysis

In this section, we analyze potential factors that
play a role in our Codex model’s performance. We
investigate three factors: (1) the number of steps in
a procedure; (2) explicit mentions of event-related
entity-of-interest (EoI) in a given step; and (3) the
logical relation (entailment or contradiction) be-
tween the event likelihood change and its related
entity state change. To study factor (1), we di-
chotomize procedures from the development set by
the average length of the procedure. To investigate
factors (2) and (3), we manually labeled the ground
truth EoI mentioning and logical relation for the
development dataset. Intuitively, estimating event
likelihood in lengthy procedures and in steps where
EoI is not explicitly mentioned would be difficult.
Rather surprisingly, Codex shows no significant
performance discrepancy under factors (2) and (3),
and only a slight performance difference in factor
(1) (see Appendix C).

Further, the task of CREPE can be divided into
two sub-tasks, first to identify whether an event
likelihood change occurred at all, and then to clas-
sify the change as either more or less likely. We ob-
serve that CoT Codex outperforms Codex on both
sub-tasks. For the classification task, in particular,
CoT Codex obtained a .149 increase in macro F1
score from .805 to .954. This shows not only that
CoT Codex is effective, but also that its bottleneck
is identifying event likelihood change.

7 Related Work

Event & Entity Extraction and Representation
Event-centric NLP has been a dominant strand of
approaches to machine reasoning. Myriad work
has focused on extracting events from the news



or web data (Liu et al., 2018; Yang et al., 2019;
Du and Cardie, 2020). The effort of structurally
representing scripts, groups of events in certain sce-
narios including procedures, started decades ago
(Abelson and Schank, 1977) and is receiving re-
vived attention in present years (Li et al., 2020;
Wang et al., 2022a). While this line of work mostly
focuses on the representation as relations (e.g., tem-
poral, hierarchical) among events, we recognize
entities as a cause of event relations and thus pro-
pose a more granular representation. Furthermore,
structured representations of events typically can-
not take advantage of the power of textual LLMs
for challenging downstream tasks. In contrast, we
advance towards the best of two worlds by working
with code language models.

Besides, existing work on jointly extracting and
representing events and entities (Lee et al., 2012;
Wadden et al., 2019; Barhom et al., 2019) neglects
the causal relation therein and treats entities and
events simply as two related tasks to be tackled
simultaneously. We causally bridge the two.

Entity State Tracking Prior work on entity state
tracking spans various disciplines of AI. For in-
stance, object tracking, a sub-task of entity state
tracking, has led to much work in both robotics
(Wang et al., 2007) and computer vision (Comani-
ciu et al., 2003). In NLP, early efforts focus on
synthetic, closed-domain data (Weston et al., 2015;
Long et al., 2016) and more recent ones shift at-
tention to real-world procedures (Bosselut et al.,
2017; Dalvi et al., 2018; Gupta and Durrett, 2019;
Du et al., 2019; Mysore et al., 2019) with a closed
set of entities and attributes or an open-ended set
Tandon et al. (2020). In all prior work, entity state
track is treated as an end-task, whereas we treat it
as a critical intermediate step for event reasoning,
a more practical application.

Counterfactual Reasoning In this work, we
hope to provide evidence that signals of entities
effectively help models reason about events. We
specifically focus on hypothetical event reasoning
because it is a high-level cognitive ability beyond
pattern recognition and a manifestation of com-
plex reasoning ability (Pearl and Mackenzie, 2018;
Pearl, 2019). Counterfactual reasoning has a long
history with formal methods (Forbus, 1984; Lewis,
2013). Less modern work exists in commonsense
(Feng et al., 2021), procedural texts (Tandon et al.,
2019), and even computer vision (Yue et al., 2021).

Multihop Reasoning Prior studies on multihop
reasoning mainly focus on question answering
from a passage (Welbl et al., 2018; Talmor and
Berant, 2018; Yang et al., 2018; Kočiskỳ et al.,
2018; Mihaylov et al., 2018; Khot et al., 2020) and
representing and utilizing multihop information in
the form of structured data (De Cao et al., 2019;
Ding et al., 2019; Qiu et al., 2019; Cao et al., 2019;
Fang et al., 2020; Thayaparan et al., 2019; Zhang
et al., 2020d, 2021; Huang and Yang, 2021).

There are also efforts such as DecompRC, Strat-
egyQA, and CGDe-FGIn that attempt to conduct
multihop reasoning by decomposing the original
task to a series of logically related sub-tasks (Min
et al., 2019; Geva et al., 2021; Cao and Liu, 2022).
Such an approach has recently seen great success
with the Chain-of-Thought (CoT) prompting of
GPT-3, which significantly improves numerous
multihop reasoning tasks (Nye et al., 2021; Ko-
jima et al., 2022; Wei et al., 2022; Wang et al.,
2022c). Following CoT prompting, Self-Ask fur-
ther elicits CoT by demanding GPT-3 to explicitly
generate the reasoning questions raised during its
chain-of-thought process (Press et al., 2022).

Code-Based Language Models and Prompts
Recent work has shown that LLMs trained on pro-
grams or code (PLMs) have an augmented ability
of reasoning over natural language texts. Notably,
Suzgun et al. (2022); Liang et al. (2022) showed
that PLMs outperforms only-text-trained LMs on
certain reasoning tasks even though the prompts
are purely natural language and contain no code.
Moreover, there has been speculation that multihop
reasoning is an emergent ability exclusive to PLMs
and absent in their only-text-trained predecessors
(Fu and Khot, 2022).

Even more interestingly, a line of contemporary
work found that, for some reasoning tasks, prompt-
ing PLMs with certain structured programs (e.g.,
Python code, JSON, PDDL) that represent the orig-
inally textual data outperforms doing so simply
with natural language prompts. These tasks include
math questions (Chen et al., 2022; Lyu et al., 2023;
Mishra et al., 2022) and event reasoning (Madaan
et al., 2022; Wang et al., 2022b) like our work.

Procedural Texts Procedural texts are an attrac-
tive data source to reason about events and enti-
ties which undergo frequent changes. There has
been steady efforts in computer vision (Miech et al.,
2019), robotics (Ahn et al., 2022), and language
(Mujtaba and Mahapatra, 2019; Zhang, 2022). In



NLP specifically, work on procedures includes ex-
tracting them from instructional texts (Paris et al.,
2002; Delpech and Saint-Dizier, 2008; Zhang et al.,
2012), reasoning about events (Takechi et al., 2003;
Tandon et al., 2019; Rajagopal et al., 2020; Zhang
et al., 2020c), knowledge-base construction (Jung
et al., 2010; Chu et al., 2017; Park and Mota-
hari Nezhad, 2018), or applying them to down-
stream applications (Yang et al., 2021b,a; Zhang
et al., 2020a; Lyu et al., 2021; Dalvi et al., 2019;
Zhang et al., 2020b; Chen et al., 2020). Our work
is scoped in procedural texts due to the outstanding
causal relations between entities and events in a
dynamic environment.

8 Conclusion and Future Work

We present CREPE, a benchmark for causal rea-
soning about events and entities in procedural texts.
We show that mainstream LLMs such as GPT-3
perform close to chance on CREPE, while using
code-like event representation as a prompt to code
language model Codex greatly improves the perfor-
mance. Further, we experiment with various ways
to encode entity information into this representa-
tion and find that eliciting chain-of-thought rea-
soning from Codex further improves performance
while existing CoT approaches with GPT-3 are in-
effective. We clearly show that LLMs benefit from
lower-level entity information when making pre-
dictions about higher-level events. Future work
should explore related tasks such as next-event pre-
diction, event temporal ordering, etc., by injecting
relevant information about entities into our repre-
sentation. Our code-representation of events allows
more powerful expressions than simply entailment
and negation considered in this work. Future work
may explore other forms of code chain-of-thought
such as first-order logic. These expressions gener-
ated by LLMs can be computed objectively, thus
ameliorating LLMs’ hallucinations and improving
the interpretability and faithfulness of predictions.

9 Limitations

Despite our best efforts, our CREPE dataset has in-
herent limitations. First, the choice of studying pro-
cedure texts, despite many discussed advantages,
limits the domain, writing style, and other semantic
features of the texts. As a result, porting our meth-
ods and findings to other text styles such as stories
or news might require domain adaptation. Second,
we prioritize quality over quantity when creating

this benchmark, which suffers from small size and
contains biases from the annotators, even though
we address the latter by having different annotators
label a test set.

When annotating the hypothetical events, our in-
tention is that they represent a wild variety that do-
ers of the procedures, humans or machines, would
care about. However, we also have to ensure these
events are unambiguously bound to some entities
in order to challenge models for their causal rea-
soning ability. While we do our utmost to balance
these two conflicting objectives, the issue might
still persist.

In CREPE, each event likelihood change is
caused by exactly one entity state change. This
is an over-simplification made to facilitate evalu-
ation. In real life, many complex events require
many entity states to be reasoned about, which in
turn may have complex logical relations among
them. We leave this for future work.

While we intend our representation of events
and entities to be a general and effective one, we
have only shown that it works well empirically
using Codex, which is one of the only code lan-
guage models at present. Whether the idea of our
structured representation applies to other models
remains to be explored.
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A Prompt Sensitivity

In addition to the results reported in Table 2, we
also investigated the effect of the number and
choice of in-context examples.

Number of in-context examples The context
window of text-davinci-002 maximally fits 3
shots. We experiment with 1-shot (0.245 f1), 2-
shots (0.348 f1), and 3-shots (0.359 f1) learning us-
ing text-002 with CoT prompting. We see that hav-
ing more context provides limited improvements
in model performance.

Prompt sensitivity with random examples We
tested the text-davinci-002 model with CoT
prompt on the dev set using randomly chosen ex-
amples from our example bank. The F1 scores for
5 runs with randomly chosen in-context examples
are 0.333, 0.327, 0.359, 0.336, and 0.331. The
mean score is 0.337, and the standard deviation is
0.011, implying low sensitivity of in-context exam-
ple selection.

B Prompt Engineering

B.1 Code Prompts for Codex

In Section 4 and 5, we have discussed our best-
performing prompts for GPT-3 and Codex. Here,
we elaborate on inferior Codex prompts and shed
light on why they do not work well empirically.

Best prompt As discussed, our best-performing
prompt represents procedures as classes and steps
as functions.

class Wash_Sneakers:
# Init
# Remove shoelaces
# Rinse
def __init__(self, event0):
self.event0 = event0 # My feet get wet by
wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely" # My
feet get wet by wearing the sneakers.

def rinse(self):
self.event0.change = "more likely" # My
feet get wet by wearing the sneakers.

Nested functions Instead of representing proce-
dures as classes as in our best-performing prompt,
we can also represent them as nested functions.

def wash_sneakers(event0):
# Init
# Remove shoelaces
# Rinse
event0 = event0 # My feet get wet by

wearing the sneakers.
def remove_shoelaces(self):

event0.change = "equally likely" # My
feet get wet by wearing the sneakers.

def rinse(self):
event0.change = "more likely" # My
feet get wet by wearing the sneakers.

No step comments The comments displaying
the steps immediately after the class declaration
are removed.

class Wash_Sneakers:
def __init__(self, event0):
self.event0 = event0 # My feet get wet by
wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely" # My
feet get wet by wearing the sneakers.

def rinse(self):
self.event0.change = "more likely" # My
feet get wet by wearing the sneakers.

No event comments The comments displaying
the events in step functions except init are removed.

class Wash_Sneakers:
def __init__(self, event0):
self.event0 = event0 # My feet get wet by
wearing the sneakers.

def remove_shoelaces(self):
self.event0.change = "equally likely"

def rinse(self):
self.event0.change = "more likely"

Two-step In this approach, we hypothesize that
providing entity state change at every step is help-
ful. To do this, we first prompt Codex to generate
entity states corresponding to a specific event:

class Wash_Sneakers:
def remove_shoelaces(self):

event = "My feet get wet by wearing
the sneakers."

event.precondition = \
("sneakers", "wet")

def rinse(self):
event = "My feet get wet by wearing

the sneakers."
event.precondition = \

("sneakers", "wet")

We select event-related entities by majority vote.
The resulting entity state bank is used to prompt
Codex to first deduce entity state at every step and
then answer the likelihood of the event.
Flat variables Instead of defining functions us-
ing def or creating class with class, we use only



variables to define relevant information.

Goal = "Wash Sneakers"

Context = "Remove shoelaces. After this,
the shoelaces are removed"

Question = "What is the likelihood that my feet
get wet by wearing the sneakers?

Options = [
"more likely",
"less likely",
"equally likely",
]

Answer = Options[2]

Context = "Rinse the sneakers. After this,
the sneakers are damp."

Question = "What is the likelihood that my feet
get wet by wearing the sneakers?

Options = [
"more likely",
"less likely",
"equally likely",
]

Answer = Options[0]

B.2 Textual Prompts for GPT-3

For GPT-3, we attempted a dozen of prompt formu-
lations in our preliminary experiments which we
found to differ minimally in performance. Here,
we show one example:

"Wash hands" involves the followings steps:
1. Turn on the tap water.
2. Put hands under running water.
3. Apply soap and rub hands.
4. Turn off the tap water.
5. Dry my hands using a towel.

For every step, find out how likely it is that
water streaming sound can be heard. Answer as
(A) very likely (B) likely (C) not very likely
(D) unlikely.

Step 1: (A) very likely
Step 2: (A) very likely
Step 3: (A) very likely
Step 4: (D) unlikely
Step 5: (D) unlikely

For GPT-3 finetuned with StrategyQA, we ask
two questions regarding the likelihood of the events,
namely whether it is more/less likely that some
event occurs. After obtaining the result, we con-
duct a consistency check. For consistent likelihood
estimates, where only one of the two questions
gives a positive answer, or both questions give neg-
ative answers, we assign the corresponding label to
the event state change. For inconsistent estimates,
where both questions give positive answers, we
assign the event change likelihood to the majority
label, which is "equally likely". An example of

a finetuning prompt-completion pair is shown as
follows

Prompt:
Context: Julius Caesar had three children.
Genghis Khan had sixteen children.
Modern geneticists have determined
that out of every 200 men today
has DNA that can be traced to
Genghis Khan.
Question: Are more people today
related to Genghis Khan than Julius Caesar?
Take it step by step:

Completion:
#1 How many kids did Julius Caesar have?
two
#2 How many kids did Genghis Khan have?
fourth
#3 Is fourth greater than two?
no
Therefore, the answer to the original
question is True

An example of our StrategyQA GPT-3 prompt
on the CREPE task is as follows:

Context: Remove shoelaces. Rinse. Srub the
shoes with cleaning solution. Rinse the shoes
again. Air dry the shoes and put the shoelaces
back on.
Question: Is it more likely that my feet get
wet by wearing the sneakers?
Take it step by step:

Completion:
#1 Is the sneaker wet?
Yes
#2 Will my feet get wet by wearing wet shoes?
Yes
Therefore, the answer to the original question
is True.

B.3 Textual Prompts for ChatGPT

As of the time of camera-ready submission of this
paper (Feburary 1, 2023), OpenAI has not released
the API for ChatGPT. Thus, we use an unofficial
API5 which is believed to behave the same as the
official web playground. Because ChatGPT is de-
signed to only work with a zero-shot and multi-turn
dialog setting, we tweak our prompt as follows:

5https://github.com/acheong08/ChatGPT

https://github.com/acheong08/ChatGPT


I'm trying to wash hands.
First, I turn on the tap water.
At this point, is it likely that
water streaming sound can be heard?
Answer with yes or no.
[answer]
Then, I put hands under running water.
At this point, is it likely that
water streaming sound can be heard?
Answer with yes or no.
[answer]
...

B.4 Textual Prompts for T5/T0
We design the following prompt for T5 and T0 to
perform our task:

Goal: [The name of the goal]
Step: [The list of steps]
Question: Is that okay that [question]?
Answer: [yes or no, generated by the model]

C Error Analysis

In Section 6, we conclude that the performance
of Codex is not influenced by (1) the number of
steps in a procedure; (2) explicit mentions of event-
related entity-of-interest (EoI) in a given step; and
(3) the logical relation (entailment or contradiction)
between the event likelihood change and its related
entity state change.

Factors Dev

Procedure Length > 7 .629
Procedure Length ≤ 7 .700

EoI Mentioned .481
EoI NOT Mentioned .496

Entailment .482
Contradiction .461

Table 6: Macro F1 Score of error analysis. The scores
for EoI and Logical relation are lower since we do not
consider the majority label, "equally likely", in the error
analysis.


