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A concept-based interpretable model for the
diagnosis of choroid neoplasias using
multimodal data

Yifan Wu1,9, Yang Liu 2,9, Yue Yang1, Michael S. Yao 1, Wenli Yang3,4,5,
Xuehui Shi3,4,5, Lihong Yang3,4,5, Dongjun Li3,4,5, Yueming Liu3,4,5, Shiyi Yin3,4,5,
Chunyan Lei6, Meixia Zhang6, James C. Gee1, Xuan Yang3,4,5 ,
Wenbin Wei 3,4,5 & Shi Gu 2,7,8

Diagnosing rare diseases remains a critical challenge in clinical practice, often
requiring specialist expertise. Despite the promising potential of machine
learning, the scarcity of data on rare diseases and the need for interpretable,
reliable artificial intelligence (AI)models complicates development. This study
introduces a multimodal concept-based interpretable model tailored to dis-
tinguish uvealmelanoma (0.4-0.6 permillion in Asians) fromhemangioma and
metastatic carcinoma following the clinical practice. We collected a compre-
hensive dataset on Asians to date on choroid neoplasm imaging with radi-
ological reports, encompassing over 750 patients from 2013 to 2019. Our
model integrates domain expert insights from radiological reports and dif-
ferentiates between three types of choroidal tumors, achieving an F1 score of
0.91. This performance not only matches senior ophthalmologists but also
improves the diagnostic accuracy of less experienced clinicians by 42%. The
results underscore the potential of interpretable AI to enhance rare disease
diagnosis and pave the way for future advancements in medical AI.

Recent advancements in machine learning and deep neural networks
have accelerated the development of computer-aided diagnostic
(CAD)methods over the past decade1. For common diseases amenable
to automated diagnoses with large publicly available datasets, deep
learning-basedmodels are able to perform comparably to radiologists
across a variety of diagnostic tasks2–6. However, for rare diseases,
particularly rare oncologic diseases, the development of CADmethods
remains underexplored. Although individually uncommon, rare can-
cers collectively account for ~24% of all new cancer cases7 and present
substantial challenges due to the lack of corresponding widespread

clinical expertise in managing these conditions. Thus, improving the
quality of artificial intelligence (AI)-based solutions for rare cancer
diseases will contribute significantly to public health8–10.

The development of AI tools for rare diseases is impeded by two
significant challenges compared to those for commondiseases. Firstly,
the scarcity of high-quality datasets impedes the advancement of
learning-based approaches. This issue stems from the low prevalence
of these diseases, the prohibitive cost of professional annotations, and
potential incompatibilities between clinical and research protocols.
Such constraints associated with the clinical management of rare
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diseasesmake it difficult to leverage data-based approaches11,12, suchas
Contrastive Language-Image Pre-training (CLIP)13 and generative Large
LanguageModels (LLMs). Secondly, the interpretability of themodel is
crucial formaking these solutions trustworthy and for their integration
into clinical practice14–16. General practitioners individually manage
only a small number of cases of any particular rare disease given their
low prevalence, making it essential for analytical tools to not only
provide accurate predictions but also produce interpretable explana-
tions in alignment with the insights of experienced specialists to sup-
port comprehensive clinical management17. Interpretability in this
context encompasses two crucial dimensions: (1) understanding how
the model arrives at a particular prediction; and (2) ensuring that this
process is presented in a human-readable format18,19.

Here we explore our methodology for designing machine
learning models specifically tailored for the diagnosis of rare dis-
eases, with a particular focus on uveal melanoma. This rare cancer
originates from various components of the uveal tract in the eye,
such as the iris, ciliary body, and choroid20,21. The incidence of this
disease is 6 per million in European populations22 and only 0.6 per
million in Asia23. Furthermore, the prognosis for uveal melanoma
patients is often poor, largely because of the high risk of metastasis
at the time of diagnosis24. As a result, thesemelanomas frequently go
undetected in routine clinical evaluations. A crucial initial step is
distinguishing choroidal melanoma (i.e., the most prevalent subtype
of uveal melanoma) from other similar conditions like metastatic
carcinoma and hemangioma, which occur in the choroid of the

fundus and typically present as solitary tumors. These conditions can
exhibit similar clinical symptoms and overlapping imaging features
in early presentation25. In this work, we aim to build an interpretable
computer-aided system to differentiate between choroidal mela-
noma, metastatic carcinoma, and hemangioma.

Considering the tumor location and the importance of the eyes,
the diagnosis of choroid neoplasias critically depends on imaging
techniques rather than the biopsy for other tumors20,26. Initial diag-
nosis requires a detailed fundoscopic examination with an expert
clinician followed by additional imaging techniques such as ocular
ultrasound (US), fluorescein angiography (FA), and indocyanine green
angiography (ICGA), as well as magnetic resonance imaging (MRI) for
confirmation andprognostication27–30.While these imaging techniques
are accessible in many general eye hospitals, domain-specific radi-
ologists and expert ophthalmologists specializing in managing chor-
oidal neoplasias are few and far between, further complicating
diagnostic workup29. Given the poor prognosis associated with chor-
oidal melanomas and the consequent need for timely diagnosis and
treatment, it is crucial to have high confidence in a diagnosis of
choroidal neoplasias prior to definitive intervention.

In this work, we propose an interpretablemodel that encodes the
expertise of specialized clinicians into AI to produce human-
understandable diagnostic outputs (Fig. 1). To establish such a pipe-
line for the automated interpretable diagnosis of choroidal neoplasias,
we need to address key challenges in data curation and model ver-
ification. First, to enable our work, we collect and release a carefully
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Fig. 1 | Overview of the MMCBM workflow. a Utilizing a large language model
(LLM), concept banks are formulated by extracting image-concept pairs from
comprehensive medical reports. Senior experts help examine the faithfulness of the
image-concept pairs andmake corresponding modifications. b Based on such pairs,
we construct the concept bank by learning concept activation vectors. cThemodel’s

output stage takes a series of images spanning 1 to 3 modalities. A pretrained image
encoder is employed to convert these images into tokenized features. Subsequent
calculations produce concept scores. The model then delivers an explainable pre-
diction, spotlighting the diagnostic evidence. Moreover, it crafts an interpretative
report, enhancing the transparency of the diagnostic process.
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curated multimodal dataset of uveal oncologic images to train classi-
fier models that accurately differentiate choroidal melanomas from
other clinically similar diseases. To our knowledge, this dataset
represents a comprehensive collection of choroidal melanomas in
Asian populations.We then use this dataset to develop theMultimodal
Medical Concept Bottleneck Model (MMCBM), a domain knowledge-
enhanced model that predicts interpretable classifications from
patient data. MMCBM supports a human-in-the-loop mechanism to
learn from the feedback provided by domain experts. We find that
MMCBM not only provides accurate classifications but also offers
interpretable visual feature concepts on primary imaging modalities
that explain their reasoning process. We show that these concepts
align well with senior doctors and provide substantial assistance for
trainees and less experienced clinicians to diagnose choroidal neo-
plasias more accurately. Our methodology leverages the extensive
knowledge in clinical reports to offer a pathway towards building
interpretable models for diagnosing rare diseases.

Results
Dataset description
To support the development of interpretable models for diagnosing
choroidal tumors, we built the Choroid Tri-Modal Imaging (CTI)
dataset, an anonymized, multimodal, and annotated collection of
medical images from Beijing Tongren Hospital (2013–2019) encom-
passing fluorescence angiography (FA), indocyanine green angio-
graphy (ICGA), and ocular ultrasound (US) images. The construction of
this dataset was approved by the Ethics Committee of Beijing Tongren
Hospital. The CTI dataset includes images from patients diagnosed
with benign hemangioma, secondarymetastatic carcinoma to the eye,
or primary choroidal melanoma (Fig. 2 and Supplementary Fig. 9c),
comprising a total of 750 subjects, with 344 female subjects having an
average age of 47.3 ± 13.0 years and 406 male subjects having an
average age of 47.0 ± 13.5 years (see Supplementary Fig. 1 and Sup-
plementary Tables 1, 2 for the detailed distribution). Specific for each

category, there are 542 patients with choroidal melanoma (FA: 379,
ICGA: 359, US: 377), 128 patients with choroidal hemangioma (FA: 90,
ICGA: 78, US: 99), and 80patients with choroidalmetastatic carcinoma
(FA: 50, ICGA: 49, US: 71). The numbers indicate the quantity of ima-
ging studies for each specific imaging modality. Note that not every
patient has images across all modalities. We refer to the subset where
patients have all threemodalities asMultiModal (MM)data and reserve
20%of thisMMdata as a hold-out test set. In theMMdata training split,
97 patients have anonymized reports for all three modalities,
describing the radiological features observed in the images.

Baseline black-box model
We first seek to build baseline black-box machine learning models.
Inspired by recent success in natural image processing31 and the
medical application with multimodal data32, our baseline black-box
model comprises three separate modality-specific encoders trained to
encode corresponding imaging study inputs into intermediate lower-
dimensional representations. The encoder output (or outputs, if mul-
tiple imaging studies of different modalities are available for a given
patient) is then passed to an attention-pooling block33 and a sub-
sequent dense layer to yield the final classification prediction (Sup-
plementary Fig. 9a). We refer to this model architecture as the
pretrained multimodal classifier. Our baseline model performs accu-
rately across different input imagemodalities, validating the feasibility
of deep-learning models for this clinical problem. Using FA imaging
studies alone, the pretrained classifier achieves an F1 score of 78.3%
(95% CI: 74.0–81.7%); using ICGA studies alone, it achieves an F1 score
of 85.9% (95% CI: 83.7–88.2%); and using US studies alone, it achieves
an F1 score of 72.1% (95% CI: 67.1–76.7%). When using all three imaging
studies together, the baseline classifier attains an F1 score of 89.2%
(95%CI: 87.9–90.6%). Additional results are included in Supplementary
Table 4. Our results show that using multimodal inputs leads to more
accuratemodels than those leveraging any individual imaging study as
input alone. However, while the pretrained multimodal classifier
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Fig. 2 | Statistics of the CTI49 dataset. a The CTI dataset is composed of 750
patients: 542 with melanoma, 128 with hemangioma, and 80 with metastatic car-
cinoma, collected from 2013 to 2019. b Proportions of patients with hemangioma,
metastatic carcinoma, and melanoma imaged by fluorescein angiography (FA),
indocyanine green angiography (ICGA), and ultrasound (US). Source data are

provided as a Source Data file. c Split of imaging studies in the training and test
datasets across various imaging modalities: 20% of the multimodal data (MM),
representing patients imaged with all three modalities, is set aside for testing. The
remaining 80% of MM and all non-MM data were allocated for training using five-
fold cross-validation.
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demonstrates impressive performance, it is impossible to interrogate
the model’s predictions for human clinicians to interpret—a key lim-
itation of existing black-box approaches.

Trustworthy interpretable framework: MMCBM
The lack of interpretability in the baseline pretrained classification
model is a common limitation ofmanymodernAI tools. To address the
need for trustworthiness inmedical diagnostics, we sought to engineer
a framework with interpretability integrated directly as a part of the
model design. Our approach, the Multimodal Medical Concept Bot-
tleneck Model (MMCBM), is designed to integrate human expertise
directly into the diagnostic process, especially crucial in high-stakes
medical contexts. The core idea is to utilize the seasoned knowledgeof
ophthalmology experts to refine how our model processes and inter-
prets image data. We achieve this by aligning the model’s interpreta-
tion of images with the kinds of visual patterns and diagnostic criteria
that ophthalmologists routinely use to make their diagnoses. This
alignment allows themodel’s outputs to be easilyunderstandable: they
are presented as combinations of recognizable visual elements and
clinical findings. These are the same elements that clinicians use as
evidence in their diagnostic decisions and are also employed as
teaching tools in training scenarios. This ensures that our model not
only aids in diagnosis but does so in a way that is transparent and
educative for medical professionals. These representations are refer-
red to as concepts.

Concept construction and grounding
Using medical reports as the knowledge database, we prompt GPT-
434 to extract concepts from reports and construct a bank of con-
cepts containing phrases related to imaging findings of choroidal
tumors. For instance, a description in a fluorescein angiography (FA)
report states, “In the venous phase, a clustered hypofluorescence
under the subretinal can be seen in the temporal part of the macula.
Fluorescence increases with time, and lesions are dominated by
fluorescent staining at the late stage.” The extracted concepts for this
FA study include “Clustered Hypofluorescence During Venous
Phase”, “Globally Increasing Fluorescence Intensity”, and “Late-Stage
Staining”. After extracting concepts from the reports of 97 patients,
we use GPT-4 to aggregate semantically similar concepts, ensuring
each concept’s uniqueness and relevance. The final concept bank
consists of 47 concepts for FA, 30 for ICGA, and 26 for US, with an
average of 3 concepts for FA, 2 for ICGA, and 5 for US per patient. The
comprehensive list of all N = 103 concepts is presented in Supple-
mentary Table 6. To validate that the concepts extracted by the LLM
accurately represented real-world clinical reasoning, two senior
ophthalmologists specializing in diagnosing andmanaging choroidal
tumors at Beijing Tongren Hospital were asked to verify and amend
the concepts. The changes made by the experts are shown in Sup-
plementary Fig. 10. Quantitatively, the initial concept bank con-
structed by GPT-4 was assessed to be reasonable and relevant,
requiring only minor modifications: 5 concepts were removed, 8 new
ones were added to the FA category, 4 to the ICGA category, and no
changes to the US category.

To ground concepts as feature embeddings, we employed sup-
port vector machines (SVMs) for concept-level binary classification.
We used image representations from a pretrained model as input and
binary vectors derived from the concept construction process as
labels. Images associatedwith assigned concepts were used as positive
samples, and all other images were used as negative samples. The
classification hyperplane vector fromeachSVMserves as the concept’s
representation, which we refer to as concept activation vectors
(CAVs)35. Subsequently, in MMCBM, an image is projected into the
space of concepts to estimate the input image alignment with any
given modality-specific concept. The alignment scores are then input
into a linear classifier to predict the relative probabilities of each of the

three targeted choroidal diseases. Figure 3a shows this process and
shows the top-k concepts derived from concept scores to explain the
model’s predictions.

Comparisonofmodel performance betweenMMCBMandblack-
box model
A common critique of interpretable machine learning models is that
enforcing priors on the model, such as requiring input images to align
with concept activation vectors, is equivalent to adding additional
regularization to the hypothesis space18. Such constraints may
adversely impact the performance of trained models36,37. To this end,
we seek to evaluate the classification performance of our MMCBM
model against the black-box pretrained multimodal classifier baseline
(Fig. 3). On the MM test set, MMCBM achieves an overall classification
F1 score of 91.0% (95% CI: 88.2– 93.4%), and the performance of the
baseline black-box model is (89.2%; 95% CI: 87.9–90.6%). The two-
sample t-tests suggest that the performance betweenMMCBMand the
black-boxmodel are not statistically different. Additionally, comparing
classifier performance across unimodal imaging inputs reveals no
statistically significant differences in classification metrics (Supple-
mentary Table 4 and Supplementary Fig. 2). This indicates that our
MMCBM framework matches the performance of black-box approa-
ches in automating the diagnosis of rare choroidal tumors according
to clinically relevant metrics. Additionally, ablation studies were con-
ducted: Supplementary Fig. 2 for encoder size, Supplementary Fig. 4
for the number of reports, Supplementary Figs. 3, 5 for the number of
concepts and Supplementary Fig. 6 for few-shot learning.

Evaluation of the generalizability of MMCBM
To assess the generalizability and robustness of ourmodels trained on
theCTI dataset, we re-trained theMMCBMandblack-boxmodels onall
the 750 subjects and conducted validations on twoadditional datasets:
an internal independent dataset from Beijing Tongren Hospital col-
lected between 2020 and 2023 (i.e., disjoint in time from the CTI
dataset), and an external test set from West China Hospital collected
between 2023 and 2024 (i.e., disjoint in both time and patient popu-
lation from theCTI dataset), are shown in Supplementary Table 3. Each
dataset is similarly structured in three modalities and focuses on the
same types of choroidal tumors, ensuring compatibility and relevance
for our validation efforts. The internal independent dataset comprises
83 cases, including 26 cases of choroidal hemangioma, 44 cases of
primary choroidal melanoma, and 13 cases of secondary metastatic
carcinoma. The external test set includes 43 cases, with a balanced
distribution of 16 cases each of hemangioma and melanoma, and 11
cases of metastatic carcinoma. For the new dataset from Tongren
Hospital, the MMCBM model achieves an accuracy of 92.8%, a sensi-
tivity of 90.3%, and an F1-score of 90.3%. The black-box (BB) model
attains a comparable accuracy of 92.8%, a slightly lower sensitivity of
87.2% (BB vs. MMCBM: z = 5.70, p < 1.0 × e−5), and an F1-score of 89.6%
(BB vs. MMCBM: z = 1.30, p = 0.19). For the test dataset from West
China Hospital, the MMCBMmodel achieves an accuracy of 88.6%, an
sensitivity of 87.5%, and an F1-score of 87.9%—outperforming the
black-box model with a lower accuracy of 77.2% (BB vs. MMCBM:
z = 9.20, p < 1.0 × e−5), a lower sensitivity of 73.6% (BB vs. MMCBM:
z = 10.72, p < 1.0 × e−5) and a lower F1-score of 72.4% (BB vs. MMCBM:
z = 11.90, p < 1.0 × e−5). Of note, our MMCBMmodel has only a 4% drop
in accuracyon theWestChinaHospital dataset,whichwas less than the
15% drop in accuracy for the black-box model. Our results support the
generalizability of the MMCBM model when compared to the black-
box models, especially when there is a distribution shift between
model training and test populations.

Test-time random intervention with Oracle
The ability to intervene in MMCBM enables richer and more inter-
active engagement for human users. For example, if a clinician
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disagrees with the model’s prediction, they can inspect the pre-
dicted concepts, correct erroneous concept scores, and analyze
how the model’s output changes in response to these adjustments.
In clinical settings, domain experts interacting with the model
may intervene to rectify potentially inaccurate concept values pre-
dicted by the system. To study this setting, we use an oracle that can
query the existence of any concept for a test input. In Fig. 4b, we
show examples of interventions that lead to the corrected predic-
tion. Consider a patient with three-modality images, where the
multimodal concepts are provided by the MMCBM. For each

modality, we obtain the concepts present in the images through
experts’ annotations. We classify these annotated concepts as
positive concepts and the remaining concepts as negative. To
quantify the presence or absence of a concept, we analyze the dis-
tribution of concept scores from the training data. We designate the
top 5% score as indicating presence (active) and the bottom 5%
score as indicating absence (inactive). This approach allows us to
intervene on concepts predicted by the MMCBM as active if they are
present in the experts’ annotations. However, since the experts’
annotations do not include importance rankings, we randomly
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Fig. 3 | Multimodal medical concept bottleneck model (MMCBM). Black-box
models, such as the pretrained classifier, learn directly from the encoded image
features and output a single model prediction without any insight as to how the
predictionwas computed. In contrast, theMMCBMshown in (a) instead represents
encoded features by their alignment with key medical concepts derived from
domain experts. This allows MMCBM to return not only its prediction but also the
top-k activated concepts that best describe the input images, giving insight into
how the model arrived at its prediction. Comparing both the classification (b) F1-
score and c sensitivity of the models, there is no statistically significant difference
between black-boxmodels andMMCBM across all sets of imaging inputs. MMCBM
concepts also outperform features derived from CLIP-based models, highlighting

the importance of sourcing prior knowledge from domain experts. The data were
presented as mean± SD, with error bars indicating the standard deviation from
n = 5 independent replicates. Statistical significance is analyzed using an unpaired
two-sided t-test. To demonstrate the generalization ability of the MMCBM, we
examine the model performance on two additional datasets. One (d) presents the
classificationperformanceofmodels usingdata fromTongrenHospital, albeit from
outside the original collection period. Meanwhile. The other (e) depicts the results
of the external dataset from West China Hospital of Sichuan University, where
variations in both scan protocols and reporting styles are evident. Source data are
provided as a Source Data file.
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sample kpos positive and kneg negative concepts. We then adjust
their corresponding concept scores to active or inactive statuses to
observe the impact on classification performance. For each patient,
we repeat this intervention process 50 times and record the best
one as an oracle. In Fig. 4a, we present the results of test-time oracle
intervention. Notably, both sensitivity and F1-score surpass those of
the non-intervened model when fewer than eight concepts per
modality are intervened, with performance peaking at 3–4 con-
cepts. This suggests that moderate concept intervention enhances

the model’s understanding of the task, improving performance,
while excessive intervention introduces noise and disrupts learned
representations, reducing effectiveness. In high-stakes environ-
ments such as medicine, this capability empowers experts
to interactively guide the model, ensuring that critical concepts
are accurately represented and reducing the likelihood of erro-
neous predictions. The detailed results for various combinations of
positive and negative concepts are provided in Supplementary
Table 5.
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1. ICGA, Clustered Hyperfluorescence

2. US, Rapid Filling and Slow Empying of Contrast Agent to and from 

the Lesion

3. US, Abnormal Blood Flow in Lesion Using Doppler

4. US, Hemispherical Solid Lesions

5. US, No Ultrasonographic Hollowing or Abnormal Findings in the 

Posterior Fossa Choroid Plexus

6. US, Clear and Regular Lesion Borders

7. US, Internally Isoechoic and Hyperechoic Imaging Findings Present

8. FA, Leakage

9. ICGA, Early-Stage Hyperfluorescence Predominates

10. US, Intravitreal Band Connected to Primary Lesion

Fig. 4 | Test-time random intervention with Oracle. a Comparison of evaluation
performance as the number of random interventions increases. For each inter-
vention, concepts are randomly selected from the experts' annotated concepts in
the test set, covering multiple modalities. The purple dot indicates the mean per-
formance, with the error bar showing the standard deviation. The small black dots
represent individual samples, each reflecting different compositions of positive

and negative concepts. Source data are provided as a Source Data file. b Examples
of successful random interventions illustrating the use of positive or negative
concepts, as randomly sampled from experts' concept annotations, to adjust the
model’s concept scores. These adjustments effectively correct the model’s initial
predictions, demonstrating how targeted concept interventions can improve
overall performance.
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Integration of MMCBM in clinical workflows
We have shown that the MMCBM effectively leverages prior knowl-
edge from domain experts to represent input data aligned with
interpretable concepts. However, it remains unknown whether our
framework can provide real-world utility in augmenting existing clin-
ical workflows. To investigate the applications of MMCBM in clinical
practice, we recruited the help of 8 doctors from Beijing Tongren
Hospital: two senior ophthalmologists specializing in the diagnosis
and management of choroidal melanomas, and six resident ophthal-
mologists in training. We assess the diagnostic performance of oph-
thalmologists alone against ophthalmologists with our trained
MMCBMmodel. In order to avoid the memorization of the seen cases,
the time lapse between the experiments w./w.o., the generated con-
cepts is 2 months. The ophthalmologists leveraging our MMCBM
model for diagnostic workflow augmentation had access to the top 10
activated concepts from the MMCBM concept bank and were able to
adjust the confidence scores of the concepts based on their judgment.
This human-in-the-loop interactive feature improves the practical uti-
lity of MMCBM in clinical decision-making, fostering a more colla-
borative and accurate diagnostic process. For the 6 less experienced
ophthalmologists, the average accuracy is 51.9%, precision 40.5%,
recall 40.9%, and F1 score 38.5%; with the aid of our MMCBM model,
their accuracy improves to 65.5%, precision to 54.3%, recall to 55.5%,
and F1 score to 54.7% (Fig. 5a). The 2 senior ophthalmologists
demonstrate a high diagnostic accuracy at baseline of 91.4%, precision
of 85.8%, recall of 83.6%, and F1 score of 84.6%. When augmented with
the model’s predictions, their performance remains relatively
unchanged, with an accuracy of 91.4%, precision of 86%, recall of
85.8%, and F1 score of 85.7%. In particular, the useofMMCBM improves
less experienceddoctors’performanceby42%on the F1 score. Detailed
results on separate groups are shown in Supplementary Fig. 11. These
results not only validate the quality and precision of the predicted
concepts of our MMCBMmodel but also highlight our model’s ability
to serve educational purposes by improving the diagnostic accuracy of
less experienced doctors for complex and rare diseases.

Comparison of assisted performance via MMCBM and black-
box model
To further evaluate the effect of assistance withMMCBM and examine
how it is distinct from the black-box model, we designed human ver-
ification experiments where six inexperienced doctors were given
different assistant results, including attention map, concepts, and
prediction probabilities, and were asked to predict the labels. More-
over, in order to evaluate the effect of different ways of assistance
more comprehensively, we add a random group with the same test
samples, yet the probability or concepts are given randomly. Both
randomand unrandomgroups have 11 subjects for hemangioma, eight
subjects for metastatic carcinoma, and 39 subjects for melanoma. In
Table 1 that corresponds to the exact numbers in Fig. 5a, we can see
that the group with both labels and concepts generated from the
model have the best performance. Another interesting observation is
that inexperienced doctors are highly likely to be affected by the given
label. The final performance highly depends on whether reliable labels
are given. However, when the model-generated concepts are given,
compared to the group with only randomized labels, the accuracy
increased from 62.7 to 70.2% (MC vs. MMCBM: z = 6.40, p < 1.0 × 10−5),
precision increased from 56.1 to 61.1% (BB vs. MMCBM:
z = 4.20, p < 1.0 × 10−5), recall increased from 63% to 68.2% (BB vs.
MMCBM: z = 4.38, p < 1.0 × 10−5), and the F1-score increased from 57.1%
to 63.2% (BB vs. MMCBM: z = 5.04, p < 1.0 × 10−5).

To evaluate how the assistance works for cases with different
levels of challenges for human beings, we calculate the percentage of
cases in each category based on whether the evaluator diagnoses it
correctly or not before and after different types of assistance. In
Table 2, we can first see that the assistance of the black-boxmodel and

MMCBM result in similar performance as long as themodel-generated
labels are given (Row 1 & 2 in Table 2). When the labels are randomly
given in the assistance stage, it would highly distort the judgment of
the evaluator (Row 3 & 4 in Table 2). Providing concepts to the eva-
luator may slightly relieve this issue where the possibilities of cor-
recting wrong answers and keeping the true answers both increases.
Specially, for the cases where the evaluators made mistakes in the
initial stage, they can correct 67.9%with the assistanceof concepts and
random labels (Row 4 in Table 2), while the rate for black-box models
with random labels is 53.6% (Row 3 in Table 2). Another finding is that
when the attention map is given with the black-box model, even if the
labels are random, the evaluator is more likely to make the correct
prediction in the initial stage, increasing from 51.7% (Row 4 in Table 2)
to 63.8% (Row 5 in Table 2). At the same time, the possibility of cor-
recting wrong answers decreases from 67.9% (Row 4 in Table 2) to
61.9% (Row 5 in Table 2). When both the model-generated concepts
and labels are given, the evaluators are then much more less likely to
be distorted for the cases that they made the correct decision in the
beginning, where the possibility of keeping right answers increases
from 83.8% (Row 5 in Table 2) to 97.3% (Row 6 in Table 2). Overall, we
can conclude that the integration of interpretable concepts in the
computer aid diagnosis can help relieve the distortion and over-
reliance of labels from the black-box models with attention maps.

Comparison between MMCBM and alternative feature embed-
ding methods
Given the recent progress made in cross-modality foundation models,
it may be possible to leverage existing feature embedding models
trained on extensive corpora of medical information to represent
input ocular imaging data and concepts. This approach might offer
greater generalizability and require less effort thanourMMCBMsetup.
To evaluate this alternative framework, we compared our concept
embedding procedure and image feature extraction with those using
contrastive language-image pre-training (CLIP)13 and its biomedical
variants, includingMedCLIP38 and BioMedCLIP39, which are specifically
fine-tuned for medical data. Briefly, MedCLIP was fine-tuned on mul-
tiple Chest X-raydatasets, while BioMedCLIP underwent fine-tuning on
15 million figure-caption pairs extracted from biomedical research
articles in PubMed Central. Our results suggest that all assessed CLIP-
based frameworks perform significantly worse than our CAV-based
feature extractionmethod used in ourMMCBM framework (Fig. 3b, c).
As expected, methods fine-tuned on specialized medical datasets—
such as MedCLIP and BioMedCLIP—outperform the generic CLIP
model as feature extractors for choroidal disease diagnosis using both
multimodal and unimodal image inputs (Fig. 3b, c, MedCLIP: 52.5%
(95% CI: 47.2–59.6%), BioMedCLIP: 57.2% (95% CI: 54.7– 59.6%), CLIP:
28.8% (95% CI: 26.2–31.3%) and Fine-tuned CLIP 26.8%, as detailed in
Supplementary A.1.4). The analysis of unimodal input results and
additional classification metrics further aligns with these findings.
Specifically, embedding model inputs with expertise-curated knowl-
edge significantly outperforms the use of general domain knowledge.
Theseobservations highlight the necessity for fine-tuning anddomain-
specific adaptation or embedding images and texts in medical appli-
cations. Furthermore, they affirm the efficacy of our MMCBM as a
viable and effective means to achieve model interpretability without
compromising algorithmic performance.

Evaluation of image-concept alignment
Our MMCBM demonstrates classification performance on par with
state-of-the-art black-boxmodels and offers interpretable insights into
final model outputs. We have also shown that the quality of model
interpretability depends on the quality of (1) the prior knowledge used
to construct the MMCBM concept bank, (2) the image and concept
embedding functions, and (3) image-concept alignment. We sought to
evaluate our model’s interpretability according to these three aspects.
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First, we evaluated the MMCBM feature representations and their
accuracy indescribing input images.Model representations for eachof
FA, ICGA, and US imaging studies were computed by the respective
MMCBM encoders before leveraging t-SNE40 dimensionality reduction
techniques to visualize the complex feature landscapes from our
multimodal dataset (Fig. 6a). We observe distinct clusters corre-
sponding to hemangioma, metastatic carcinoma, and melanoma,
indicating effective class separation by the MMCBM encoders. Quali-
tatively, the clusters corresponding to multimodal data inputs appear

more cohesive and less dispersed, suggesting that integrating multi-
modal inputs may improve the separability of the different class
representations in this representation space. This enhanced clustering
densitymay contribute to the improveddiscriminative performanceof
our multimodal MMCBM models in contrast to models with only
unimodal inputs accessible.

Next, we evaluated the quality of the MMCBM concept repre-
sentation and image-concept alignment by examining the accuracy
of the SVM classifiers employed in generating concept vectors for

a

b

Test-time Random Intervention

FA

ICGA

US

Choroidal 
Melanoma

• FA, Blurred Optic Disc Margins.
• ICGA, Rich Vascular Network within the Lesion.
• US, Negative Imaging Findings with Movement  on Dynamic Imaging.

Positive 
Concepts

[ -0.64, -0.01, -1.22 ]

Intervention

[ 0.86, 1.09, 0.76 ]
Choroidal 
Hemangioma

FA

ICGA

US

Choroidal 
Metastatic 
Carcinoma

• FA, Pinpoint Hyperfluorescence.
• ICGA, Constant Hypofluorescence.
• US, Rapid Filling and Slow Empying of Contrast Agent to and  from the 

Lesion.

Positive 
Concepts

[ 0.38, 1.22, 0.33, 
-0.86, 0.18, -0.81 ]

Intervention

[ 0.63, 1.30, 0.80, 
-2.57, -0.97, -1.32 ]

Choroidal 
Melanoma

• FA, Hypofluorescence Primarily During Venous Phase.
• ICGA, Early-Stage Hyperfluorescence Predominates.
• US, Ultrasonographic Hollowing.

Negative
Concepts

model

0 1 2 3 4 5 6 7 8 9 10

0.85

0.90

0.95

n. of concepts intervened per modality

F1
-s

co
re

0 1 2 3 4 5 6 7 8 9 10

0.85

0.90

0.95

n. of concepts intervened per modality

Se
ns

itiv
ity

model

Fig. 5 | Comparison of the evaluation performance with and without AI assis-
tance. a Performance benchmark with human evaluators: A comparison of our
model’s performance against inexperienced doctors (denoted as “Inexp”) and
senior doctors. After presenting them with the model’s predicted concepts, they
conducted a subsequent assessment, enabling us to document and compare per-
formancemetrics. Additionally, “MC/L” refers tomodel-generated concepts/labels,

and “RC/L” refers to concepts or labels assigned randomly. Source data are pro-
vided as a Source Data file. b Qualitative examples of MMCBM assistance. Case 1:
Initially misdiagnosed, the inexperienced doctors corrected the error after con-
sulting the MMCBM's top ten predicted concepts, resulting in an accurate diag-
nosis. Case 2: Despite referencing the MMCBM's predicted concept, the
inexperienced doctors maintained an erroneous diagnosis.
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each medical concept. A high SVM accuracy score indicates a con-
cept’s representational effectiveness and consistent presence across
the dataset. According to this metric, FA and ICGA concepts achieve
high accuracy across the board (Fig. 6b), with accuracy on test data
exceeding 90% for all concepts. This suggests that concepts derived
from FA and ICGA are well-represented and aligned with the input
images. In contrast, though less accurate, the accuracy scores for US-
based concepts are still higher than 80% for all concepts. This sug-
gests that classifying diseases from ultrasound images alone may be
more challenging. Specific details of the individual concepts and
their corresponding accuracies are detailed in Supplementary
Table 6.

To further assess the quality of MMCBM concept-based inter-
pretability, we examined how well the model concepts align with
ophthalmologist annotations. We selected the top-k concepts pre-
dicted by MMCBM for each patient in the multimodal testing dataset.
In Fig. 6c, we quantify our model’s alignment with expert annotations
according to key performance metrics: Precision@k, Recall@k, F1@k,
Median-Rank@k, Mean-Rank@k, and mean–reciprocal–rank-(MRR)
@k, with k = 10.We compared two setups of concept banks: the report-
extracted and the expert-verified. We found that report-extracted
concepts achieved Precision@10 = 0.53 and Recall@10 = 0.57, similar
to expert-verified concepts (Precision@10 = 0.54, Recall@10 = 0.55). It
is worth noting that expert-verified concepts yielded better alignment
with expert annotations, suggesting that human intervention in the
verification process improves the concept bank’s ability to capture
domain knowledge. Our analysis demonstrates that the MMCBM
model concepts extracted from reports closely match the perfor-
mance of expert-verified annotations across various metrics. This
suggests that report-extracted concepts achieve interpretability

comparable to expert-verified concepts, negating the need for time-
intensive expert annotation while effectively capturing the salient
clinical features of interest to ophthalmologists.

Demonstration of human–model interaction
To exemplify a practical engineered system for enabling human–model
interactions, we make available our website (https://mmcbm.liuy.site)
used for this user-based study with the eight ophthalmologists. Our
website provides a user-friendly online interface for concept bank ver-
ification and predication evaluation. The annotation system allows
ophthalmologists to upload de-identified images and annotate them
with clinically meaningful concepts (Fig. 7a) or verify images along with
report-extracted concepts. The prediction system can accept FA, ICGA,
and/or US images, and use them to output imaging concepts with
confidence scores (Fig. 7b). In instances where MMCBM may produce
erroneous concept predictions, clinicians can easily adjust the con-
fidence scores of individual concepts within the user interface. Such
adjustments can refine and correct model predictions to better align
them with clinical findings that may be otherwise inaccessible to the
model. This feature of human intervention significantly improves the
practical utility of MMCBMs in clinical decision-making, fostering a
more collaborative and accurate diagnostic process. Figure 7c displays
several examples generated by MMCBM, including a curated selection
of representative cases processedby themodel. Finally, given themodel
outputs, a basic diagnostic report can be generated by leveraging LLMs
to interpret the MMCBM outputs and concept activations (Fig. 7d and
Supplementary Fig. 8). The generative model highlights the top-k acti-
vated concepts before presenting the final generated diagnostic report.
The report generation prompt example is included in Supplemen-
tary Fig. 8.

In summary, our results highlight the MMCBM model as a pro-
mising tool for clinical decision support.While themodel’s predictions
are accurate on their own, they aremost effectivewhen combinedwith
human expertise, offering the most comprehensive diagnostic per-
formance and underscoring the potential of AI-assisted diagnostics.

Discussion
In this work, we establish the Multimodal Medical Concept Bottleneck
Model (MMCBM), an interpretable approach for diagnosing rare dis-
eases. To facilitate the application of advanced machine learning
techniques, we initially tackled the significant challenge of scarce
comprehensive training data by curating the choroidal tri-modal
imaging clinical dataset. This dataset, which includes image data of
fluorescein angiography (FA), indocyanine green angiography (ICGA),
and ultrasound (US) with associated radiology reports, to our knowl-
edge, is an extensive dataset of choroidal melanoma. Based on this
dataset, our MMCBM maintains the accuracy of prior “black-box”
models and introduces interpretability through the concept bottle-
neck model. Furthermore, by incorporating the explainable MMCBM

Table 2 | Comparison of the evaluation performance with and
without AI assistance

Init Assist Wrong
then
right

Right
then
wrong

Right
then
right

Wrong
then
wrong

N A BB +ML 41.4% 3.5% 48.3% 6.9%

MMCBM+MC+ML 43.1% 3.5% 48.3% 5.2%

BB + RL 25.9% 13.8% 37.9% 22.4%

MMCBM+MC+RL 32.8% 8.6% 43.1% 15.5%

BB
+RL

MMCBM+MC+RL 22.4% 10.3% 53.5% 13.8%

MMCBM+MC+ML 29.3% 1.7% 62.1% 6.9%

The group “Wrong then Right” means that the inexperienced evaluator made a mistake in the
initial judgment yet corrected it with the provided assistance. The group “Right then Wrong”,
“Right then Right”, and “Wrong then Wrong” are defined similarly. The stage “Init: NA” denotes
that the evaluator initially performs the task with no assistance and the stage “Assist: BB +ML”
denotes that the evaluator further performs the task with the assistance of black-boxmodelwith
model-generated labels. For other notations, “MC”means model-generated concepts and “RL”
means randomly generated labels.

Table 1 | Human performance with the AI assistant

Human/model Randomized part Accuracy Precision Recall F1-score

Blackbox Model None 93.1% 90.5% 87.8% 89.0%

Human None 89.7% 83.8% 88.3% 85.6%

Label Only 62.7% 56.1% 63.0% 57.1%

MMCBM Model None 93.6% 91.5% 89.7% 90.5%

Human None 91.9% 86.2% 86.2% 86.2%

Label Only 70.2% 61.1% 68.2% 63.2%

Concept Only 90.3% 87.5% 85.9% 86.6%

Concept & Label 59.1% 51.3% 56.9% 52.6%

For the “Randomized part”, “None”means providing the real output from themodel, Label onlymeans that only the label is randomized, “Concept only”means that only the concept is randomized,
and “Concept” and “Label” means that both the concept and label are randomized. Note: the attention map (GradCAM) is incorporated into the visualization of the black-box assistant.
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into the diagnostic workflow, our model significantly enhances the
performance of inexperienced ophthalmologists.

Unlike traditional methods for explainable AI, which often rely on
saliency maps41–43 to highlight important spatial attributes, our pipe-
line aligns more closely with clinical practice by mimicking the diag-
nostic thought process used by domain experts. Clinicians identify a
range of descriptive visual features, including textual elements, con-
trast, shape, and dynamic changes, that extend beyond pixel values
alone. Our approach of constructing “concepts” extends its definition
from the data-driven high-level visual features44–46 to the image-
context pairs so that the extracted image features align well with what
the radiologist pays attention to in the clinical practice, thus providing
human-comprehensible descriptions that facilitate intervention in the
diagnostic process. This yields benefits in both methodology and

clinical practice. Regarding the methodology, compared to the tradi-
tional approaches requiring either expensive labeling or sophisticated
network infrastructure designs to integrate clinical insights, it sim-
plifies the alignment between domain knowledge in clinical practice
and the representational power of neural networks. In terms of clinical
practice, it facilitates not only the radiologists in identifying over-
looked biomarkers by reminding them of the image-concept pairs but
also the ophthalmologists in the diagnosis by demonstrating the
decision routine with concept evidence. Our results prove immensely
beneficial for inexperienced doctors who may lack training in finding
identification and risk over-reliance on AI outputs47.

Moreover, recent advancements in vision and natural language
processing, such as large language models (LLMs) and contrastive
language-image pre-training (CLIP), have paved new pathways for

Fig. 6 | Comparative human evaluation and model insights. a Embedding
Visualizations via t-SNE: This offers a graphical representation of embeddings from
the trio of pretrained encoders. Notably, the fusedMM embeddings are processed
through the attention-pooling mechanism. b Accuracy of SVMs in generating
concept banks using Concept Activation Vectors (CAVs). c Metrics of predicted

Top-k concepts on test dataset with k = 10. This evaluation includes precision@k,
recall@k, and F1@k, as well asmean rank@k, median rank@k, andmean reciprocal
rank@k. The data were presented as mean± SD, with error bars indicating the
standarddeviation fromn = 5 independent replicates. Sourcedata are providedas a
Source Data file.
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research into interpretable diagnostic systems. However, for rare dis-
eases like choroidal melanoma, the scarcity of paired image-text
knowledge on the internet presents a significant challenge to the
reliability of these models’ reasoning capabilities, as evidenced in
Fig. 3. While professional annotation of high-quality data can mitigate

this issue, further data access and expertise challenges remain38,
especially for rare diseases. Our concept-based multimodal model
circumvents these challenges by utilizing LLMs to process texts with-
out necessitating detailed labeling of image features. The model’s
predictive and interpretive power stems from integrating the

Fig. 7 | Example of human interactive interface.We offer a website to facilitate
the user interactive study with ophthalmologists and our trained MMCBM model.
a Image display panel: as FA and ICGA imaging span various time frames, oph-
thalmologists pinpoint images from early, middle, and late phases for accurate
classification. b Interventions interface on concept bottleneck: a panel that allows
adjustment of the concept scores to refine thefinalprediction. cVisual emphasison
bottlenecks: a curated selection of representative cases processed by the model,

highlighting the top-k concepts prioritized by their attention scores in the weight
matrix displayed across three distinct tumor classes. d Diagnostic reporting in
action: anexample of a diagnostic report formulated byChatGPTduring the testing
phase. The input to ChatGPT includes the predicted top-k concepts combinedwith
patient-specific details, highlighting the model’s capability to produce inter-
pretable diagnoses.
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pretrainedmodel with the extracted relationship between reports and
images. This approach mitigates the data scarcity issue for rare dis-
eases in recent foundation models, avoiding the need for extensive
labeling efforts in medical AI preparation, thus making the design
extendable to other rare diseases.

In the realism of AI-aid medical diagnosis, particularly for the
detection and intervention of serious diseases like the choroid neo-
plasias we considered in the current work, ethical considerations are of
critical importance48. Our methodology, which enables human-in-the-
loop feedback, helps address this issue by aligning human expertise
with AI diagnosis. Specifically, by actively involving domain experts in
the training and validation phases of AI model development, we not
only ensure that the AI’s diagnostic concepts are vetted by experienced
clinicians but also provide feasible constraints of the degree of AI
intervention. This reduces the risk of hallucinations arising from reli-
ance solely on AI. This approach may foster trust among clinicians and
patients in AI-assisted medical decisions. The inclusion of human-in-
the-loop integration in our AI models aligns with ethical guidelines for
AI in healthcare, emphasizing the safeguarding of patient dignity and
privacy. As we advance the frontiers of medical AI, it is crucial to
maintain a balanced synergy between technological innovation and
ethical responsibility, ensuring that AI serves as a supportive tool rather
than a replacement for the nuanced judgment ofmedical professionals.

While the proposed MMCBM demonstrated improved general-
ization compared to black-box models, achieving broader general-
izability will likely require multi-center collaborative efforts.
Additionally, incorporating a wider range of tumor imagingmodalities
and medical reports could enhance the applicability of concept-based
models to the diagnosis of other tumors with similar recognizable
features. Furthermore, exploring howAImodels canbe integrated into
clinical workflows will be crucial for advancingmedical AI, particularly
as more sophisticated AI tools continue to emerge.

In summary, the development of MMCBMs marks a significant
advancement toward achieving interpretable and reliable diagnoses
within the healthcare domain. As efforts to refine and incorporate
these models into clinical workflows progress, it is imperative to
carefully consider the ethical and regulatory dimensions to ensure that
these innovations enhance patient outcomes without compromising
the standards of care or jeopardizing patient safety. This work
delineates a promising avenue for applying artificial intelligence in the
nuanced and critical field of diagnosing rare diseases, offering a
blueprint for future explorations in this vital area of medical research.

Methods
Dataset collection and ethics statement
All studies were conducted in accordance with protocols approved by
the Ethics Committee of Beijing Tongren Hospital, Capital Medical
University (Protocol No. TRECKY2018-056-GZ(2022)-07). The patient
data in the CTI dataset were collected at Beijing Tongren Hospital from
March 2013 to September 2019. Sex and/or gender were not con-
sidered in the study design; participants’ sex/gender, race, ethnicity,
and ancestry were determined through self-report. To our knowledge,
it is a substantial clinical database containing multimodal data from
patients with choroidal melanoma and other closely related ocular
pathologies. This extensive database contains diagnostic and patho-
logical data of patientswith choroidal diseases. The database includes a
total of 925 cases, which comprise 161 cases of choroidal hemangioma,
82 cases of choroidal metastatic carcinoma, and 682 cases of choroidal
melanoma. The image collection includes three types of radiological
images: fluorescein angiography (FA), indocyanine green angiography
(ICGA), and Doppler ultrasound images (US). Each patient has one or
moremodalities of images. The FA and ICGA images, being time-series,
were captured from three angles: 30, 55, and 102 degrees. The US
images include two types: B-mode ultrasound and color Doppler
ultrasound. Medical professionals have thoroughly reviewed the data-

cleaning process to ensure its integrity and clinical relevance. For FA
and ICGA modalities, we ignored the shooting angle and categorized
the FA and ICGA images into three periods—early, middle, and late—in
alignment with existing clinical diagnostic recommendations. The time
frames for these periods are as follows: ICGA (Early: less than 5min;
Middle: between 5 and 20min; and Late: at least 20min) and FA (Early:
less than 5min,Middle: between 5 and 10min, Late: at least 10min).We
selected binocular color Doppler images containing blood flow infor-
mation for the USmodality. Finally, the cleaned dataset includes a total
of 750 cases, which comprises 128 cases of choroidal hemangioma, 80
cases of choroidal metastatic carcinoma, and 542 cases of choroidal
melanoma. There are 53 patients with choroidal hemangioma, 38
patients with choroidal metastatic carcinoma, and 194 patients with
choroidal melanoma with all three imaging modalities, which we refer
to as multimodal (MM) data. Additionally, 97 cases have clinical diag-
nostic reports that describe the radiological features observed in the
FA, ICGA, and US images. Informed consent was obtained from all
patients whose anonymized and de-identified data is included in the
dataset. Per the Declaration of Helsinki 2000, the collecting organiza-
tion obtained written informed consent from the patients.

Data splitting
To optimize data utilization and establish reliable evaluation indi-
cators, we initially allocated 20% of patients with all three imaging
studies as the test set and performed 5-fold cross-validation at the
patient level on the remaining data. Specifically, the remaining data is
split into five folds based on each pathology and modality. Data
augmentation techniques were applied during training, including
random horizontal flipping, random rotating, and random zooming.
To build the multimodal concept banks, we used 97 diagnosis
reports, comprising 39 cases of choroidal hemangioma, 18 of chor-
oidal metastatic carcinoma, and 40 of choroidal melanoma. Each
report included three modal images and prompted GPT-4 to extract
relevant medical concepts from reports. The prompts are detailed in
Supplementary Fig. 7, and the extracted concepts are in Supple-
mentary Table 6.

Model training
Consider a training datasetDtrain = ðx, r, yÞ� �

comprising image-report
pairs, where x 2 X represents a fundus image (of any imaging mod-
ality), r 2 R is the clinical patient report collected by doctors, y 2 Y :

= fhemangioma, carcinoma,melanomag is the corresponding disease
label. We utilize GPT-4 to analyze the reports and extract relevant
concepts, represented as a function LLM : R ! C where C is the space
of concepts. We can then prompt GPT-4 to combine concepts with the
same semanticmeaning, resulting in a compressed representation ofN
concepts C = fc1, c2, . . . , cNg. Using a pretrained multi-modality back-
bone ϕ : X ! Z capable of mapping different modality images into a
shared feature space, we can generate bottleneck embeddings to
establish a concept bank, denoted as ZC 2 RN × d , where N is the
number of concepts and d the size of the embedding space ofϕ. Row i
of the two-dimensional matrix ZC represents the learned representa-
tion of the ith concept ci obtained through Concept Activation Vectors
(CAVs)35. MMCBM generates a prediction ŷ= g sim ϕðxÞ,ZC

� �� �
. The

function sim : Rd ! RN computes the concept scores by calculating
the similarities between image features and each element of the con-
cept bank ZC. The function g : RN ! Y predicts the final label based
on the concept scores, serving as an interpretable predictor. To learn
the MMCBM, we solve the following problem:

min
g

E
ðx, c, yÞ�D

L g sim ϕðxÞ,ZC
� �� �

, y
� �

ð1Þ

where ϕ(x) is the projection to the concept space and L is the cross-
entropy loss. To ensure that the final prediction ŷ can be easily derived
from input sim ðϕðxÞ,ZCÞ, we model g as a linear classifier.
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Enhancing diagnostic with LLM
GPT-4was employed in two stages of theworkflow. Formodel training,
we utilize GPT-4 to analyze clinical reports and extract relevant con-
cepts for use in training the MMCBM model. Additionally, GPT-4 was
used for medical report generation (MRG). By combining the pre-
dicted concepts with the model’s output, we prompted GPT-4 to
generate comprehensive clinical reports (Supplementary Fig. 8). These
reports follow a structured format, including patient information,
medical details, diagnosis, and treatment recommendations. GPT-4
played a key role in converting the extracted concepts into a cohesive,
readable narrative, ensuring the generation of standardized clinical
reports.

Evaluation of model performance
Using a fivefold cross-validation framework, we report the macro-
averaged metrics accuracy, precision, recall, and F1 score, which con-
siders both precision and recall while addressing potential class
imbalances. In addition to these traditional classification metrics, we
also focused on interpretability metrics such as Precision@k,
Recall@k, MeanRank@k, andMedian Rank@k. Precision@kmeasures
how many of the top-k identified concepts were right compared with
the annotated ground truth. Recall@k evaluates the ratio of correct
concepts in the first k predictions to all correct concepts for the
patient. F1@k is the harmonic mean of Precision@k and Recall@k.
Mean Rank@k and Median Rank@k indicate the average ranking
position of the correct concept; lower scores are better.

Statistical information
For the comparison of model performance in Fig. 3b, the error bar is
defined as the standard error and significance is calculated through the
two-sample t-tests based on the distribution of metrics obtained from
the k-folds. The n.d. denotes no difference, which indicates the p-value
associated with the test is larger than 0.05. For the comparison of
model performance in Figs. 3d, 5a and Table 1, we bootstrap the test
dataset with the leave-one-out setup and calculate the statistical sig-
nificance with the two-sample proportions z-tests.

Software utilized
All code was implemented in Python (3.11) using Pytorch (2.0.1) as the
base deep learning framework. We also used several Python packages
for data analysis and results visualization, including monai (1.3.2),
openai (1.44.0), torchvision (0.15.2), numpy (1.24.4), scikit-learn (1.3.0),
pandas (2.0.3), matplotlib (3.8.2), opencv-python (4.8.0), and gradio
(4.43.0). Prism was used to create Figs. 2, 3, 5, 4, 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Choroid Tri-modal Imaging (CTI)49 dataset utilized in this study is
available in figshare with the identifier https://doi.org/10.6084/m9.
figshare.28255265.v2. The raw patient data were not publicly available
due topatient privacy restrictions. Additionally, source data for figures
are provided with this paper in the Source Data file. Source data are
provided with this paper.

Code availability
The code is publicly available under the BSD License at https://github.
com/brain-intelligence-lab/MMCBM. A permanent version is released
on Zenodo50.
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