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Abstract14

Diagnosing rare diseases presents a common challenge in clinical practice, necessitating the expertise of15
specialists for accurate performance. While the advent of machine learning offers potentially promising16
solutions, developing such technologies for rare disease diagnosis is hindered by a scarcity of data on rare17
conditions and the unmet demand for models that are both interpretable and trustworthy for clinical18
usage. Interpretable AI, with its capacity for producing human-readable outputs, can facilitate clinician19
validation, and contribute to the education of junior clinicians through exposure to a broad spectrum of20
cases. In this, we investigate how interpretable AI methods can be leveraged for rare disease diagnosis. We21
focus on choroid neoplasias, the most prevalent form of eye cancer in adults, albeit with a low prevalence22
of 5.1 per million. We build the largest multimodal dataset to date of choroid neoplasm imaging data from23
over 750 patients collected between 2004 to 2022. Furthermore, we introduce a multimodal concept-based24
interpretable model (MMCBM) that distinguishes between three types of choroidal tumors, integrating25
insights from domain experts via radiological reports. Our model not only achieves an F1 score of 0.91,26
rivaling that of black-box models, but also boosts the diagnostic accuracy of physicians by 42%. This27
study highlights the significant potential of interpretable machine learning in improving the diagnosis of28
rare diseases, laying a groundwork for future breakthroughs in medical AI that could tackle a wider array29
of complex health scenarios.30

Keywords: Uveal Melanoma, Computer-aided Diagnosis, Interpretable Machine Learning, Multi-modality31
Classification, Concept Bottleneck Model, Rare Disease Diagnostics32
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Introduction33

Recent advancements in machine learning and deep neural networks have accelerated the development34

of computer-aided diagnosis (CAD) methods in the past decade [1]. For common diseases amenable to35

automated diagnoses with large publicly available datasets, deep learning-based models have performed com-36

parably to radiologists across a variety of diagnostic tasks. Example applications include analyzing chest37

X-rays (CXRs) [2, 3], fundus photography for automated retinopathy screening [4], and brain MRIs for38

tumor and stroke lesion quantification [5, 6]. However, for many diseases, especially rare diseases, there is39

often a lack of high-quality datasets to power such learning-based approaches due to the prohibitive cost40

of professional annotations and potential incompatibilities between clinical and research protocols. In addi-41

tion, high-stakes diagnostic tasks for diseases associated with high patient morbidity and mortality crucially42

require interpretable machine-generated predictions for easy downstream verification by specialist clinicians43

with relevant domain expertise [7–9]. Addressing such challenges is therefore crucial for developing CAD44

technologies for rare disease identification.45

In the workup of rare oncologic diseases, physicians use multimodal imaging biomarkers collected from46

different acquisition methods to provide a comprehensive diagnosis for patients. The development of an47

applicable CAD model should also employ such a multi-modal pipeline. Recent work proposes implementing48

these pipelines by aligning medical imaging data to text-based context descriptions [10, 11], which leverages49

the representation power of foundation models such as Contrastive Language-Image Pre-training (CLIP) [12]50

and generative Large Language Models (LLMs) [13]. While these methods may help augment the clinical51

workflows in many common diseases, their applications to rare disease diagnostic tasks are largely unexplored.52

Notably, when attempting to diagnose rare diseases with artificial intelligence (AI) in particular, there is a53

need for well-curated data and feasible tools to generate explainable biomarkers aligned with experienced54

specialists. High-quality data with labeled image-text pairs are necessary to train sophisticated AI models55

with sufficient diagnostic performance. Because of the low prevalence of rare diseases, the analytical tools56

also need to produce interpretable explanations as well as accurate predictions to comprehensively facilitate57

the clinical management [14–16]. These practical constraints for diagnosing rare oncologic diseases call for a58

machine-learning paradigm distinguished from existing performance-focused approaches.59

In this work, we discuss our approach on engineering machine learning model architectures specifically60

designed for rare disease diagnosis. We focus on the diagnosis of uveal melanoma, a rare cancer originating61

from the iris, ciliary body, choroid, or other components of the uveal tract in the eye [17, 18]. While cases62

of uveal melanoma are rare, with an estimated incidence of 5.1 per million in the United States, the long-63

term prognosis is poor due to the high risk of metastasis at the time of diagnosis [19]. Uveal melanomas are64
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Fig. 1: Overview of the MMCBM workflow. (a) Utilizing a large language model (LLM), concept banks
are formulated by extracting image-concept pairs from comprehensive medical reports. Senior experts help
examine the faithfulness of the image-concept pairs and make corresponding modifications. (b) Based on such
pairs, we construct the concept bank by learning concept activation vectors. (c) The model’s output stage
takes a series of images spanning 1 to 3 modalities. A pre-trained image encoder is employed to convert these
images into tokenized features. Subsequent calculations produce concept scores. The model then delivers
an explainable prediction, spotlighting the diagnostic evidence. Moreover, it crafts an interpretative report,
enhancing the transparency of the diagnostic process.

frequently missed in routine clinical workups due to their low prevalence in the general population. As a result,65

few clinicians are well-trained in their diagnosis and clinical management [20]. Initial diagnosis requires a66

detailed fundoscopic examination with an expert clinician followed by additional advanced imaging techniques67

such as ocular ultrasound (US), fluorescein angiography (FA), and indocyanine green angiography (ICGA)68

for confirmation and prognostication [21–24]. Domain-specific expert physicians specializing in managing69

uveal melanomas are few and far between, further complicating diagnostic workup [23]. To overcome these70

challenges, we aim to build a computer-aided system to differentiate between choroidal melanoma, metastatic71

carcinoma, and hemangioma—, all occurring in the choroid of the fundus and often appearing as solitary72

tumors. These diseases may have similar symptoms in the early stages and overlapping imaging features [25].73

Given the poor prognosis associated with uveal melanomas and the consequent need for timely diagnosis74
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and treatment, it is crucial to have high confidence in a diagnosis of choroidal neoplasias prior to definitive75

intervention.76

To establish such a pipeline for the automated interpretable diagnosis of choroidal neoplasias, we need77

to address key challenges in data curation and model training and verification. First, to enable our work,78

we collect the first well-curated multimodal dataset of uveal oncologic pathologies to train classifier models79

that accurately differentiate choroidal melanomas from other clinically similar diseases. To our knowledge,80

this dataset is the largest one for choroidal melanomas in the world. We then use this dataset to develop81

the Multimodal Medical Concept Bottleneck Model (MMCBM), a domain knowledge-enhanced model that82

predicts interpretable classifications from patient data. MMCBM supports a human-in-the-loop mechanism83

to learn from feedback provided by domain experts. We find that MMCBMs not only provide accurate84

classifications, but also offer interpretable concepts that explain its reasoning process. The concepts align85

well with senior doctors and provide substantial assistance for the junior ones to more accurately diagnose86

choroidal neoplasias. Our methodology leverages the extensive knowledge in clinical reports to offer a pathway87

towards building interpretable models for diagnosing rare diseases.88

Results89

Dataset Description90

To support the development of interpretable models for diagnosing choroidal tumors, we built the Choroid91

Tri-Modal Imaging (CTI) dataset, a anonymized, multimodal, and annotated collection of medical images92

from Beijing Tongren Hospital (2004-2022) encompassing Fluorescence Angiography (FA), Indocyanine93

Green Angiography (ICGA), and Ocular Ultrasound (US) images. Construction of this dataset was approved94

by the Ethics Committee of Beijing Tongren Hospital. CTI includes images from patients diagnosed with95

benign hemangioma, secondary metastatic carcinoma to the eye, or primary choroidal melanoma. The CTI96

dataset (Fig. 2) consists of 542 patients with choroidal melanoma (FA: 379, ICGA: 359, US: 377), 12897

patients with choroidal hemangioma (FA: 90, ICGA: 78, US: 99), and 80 patients with choroidal metastatic98

carcinoma (FA: 50, ICGA: 49, US: 71). The numbers indicate the quantity of imaging studies for each99

specific imaging modality. Note that not every patient has images across all modalities. We refer to the100

subset where patients have all three modalities as Multi-Modal (MM) data and reserve 20% of this MM101

data as a hold-out test set. In the MM data training split, 97 patients have anonymized reports for all three102

modalities, describing the radiological features observed in the images.103

104
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Fig. 2: Statistics of the CTI Dataset. (a) The CTI dataset is composed of 750 patients: 542 with
melanoma, 128 with hemangioma, and 80 with metastatic carcinoma, collected from 2004 to 2022. (b)
Proportions of patients with hemangioma, metastatic carcinoma, and melanoma imaged by Fluorescein
Angiography (FA), Indocyanine Green Angiography (ICGA), and Ultrasound (US). (c) Split of imaging
studies in the training and test datasets across various imaging modalities: 20% of the Multi-Modal data
(MM), representing patients imaged with all three modalities, is set aside for testing. The remaining 80% of
MM and all non-MM data are allocated for training using 5-fold cross-validation.

Baseline Blackbox Model105

We first sought to build baseline black-box machine learning models. Taking inspiration from recent success106

in natural image processing [26], our baseline black-box model is composed of three separate modality-107

specific encoders trained to encode corresponding imaging study inputs into intermediate lower-dimensional108

representations. The encoder output (or outputs, if multiple imaging studies of different modalities are109

available for a given patient) is then passed to an attention pooling block [27] and subsequent dense layer to110

yield the final classification prediction. We refer to this model architecture as the Pre-Trained Multimodal111

Classifier. Our baseline model performs accurately across different input image modalities, validating the112

feasibility of deep-learning models for this clinical problem. Using FA imaging studies alone, the pre-trained113

classifier achieved an F1 score of 78.3% (95% CI: 74.0 - 81.7%); using ICGA studies alone, it achieved an114

F1 score of 85.9% (95% CI: 83.7 - 88.2%); and using US studies alone, it achieved an F1 score of 72.1%115

(95% CI: 67.1 - 76.7%). When using all three imaging studies together, the baseline classifier attained116

an F1 score of 89.2% (95% CI: 87.9 - 90.6%). Additional classification are included in Supplementary117

Table A1. Our results show that using a multimodal inputs lead to models that are more accurate than118

those leveraging any individual imaging study as input alone. However, while the Pre-Trained Multimodal119

Classifier demonstrates impressive performance, it is impossible to interrogate the model’s predictions for120
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human experts to interpret —a key limitation of existing black-box approaches.121

122

Trustworthy Interpretable Framework: MMCBMs123

The lack of interpretability in the baseline pre-trained classification model is a common trait of many124

modern AI tools. To address the need for trustworthiness in medical diagnostics, we sought to engineer a125

framework with interpretability baked into the model design. Our approach, referred to as the Multimodal126

Medical Concept Bottleneck Models (MMCBMs), is a task-agnostic framework designed for high-stakes127

applications where human-in-the-loop or subsequent human verification is critical. Our key insight is to128

leverage prior knowledge from domain experts to align the intermediate representations of input images by129

the model as representations that human experts can easily understand. In this way, model predictions can130

be easily interpreted as activations and linear combinations of these representations. These representations131

can be visual patterns or findings that clinical experts consider the evidence for making diagnoses and are132

used as educational guidelines in a natural language format. We refer to these representations as concepts.133

134

Concept Construction and Grounding135

Using medical reports as the knowledge database, we prompt GPT-4 [28] to extract concepts from reports136

and construct a bank of concepts containing phrases related to imaging findings of choroidal tumors. For137

instance, a description in a fluorescein angiography (FA) report states, “In the venous phase, a clustered138

hypofluorescence under the subretinal can be seen in the temporal part of the macula. Fluorescence increases139

with time, and lesions are dominated by fluorescent staining at the late stage.” The extracted concepts for140

this FA study include “Clustered Hypofluorescence During Venous Phase”, “Globally Increasing Fluores-141

cence Intensity”, and “Late-Stage Staining.” After extracting concepts from the reports of 97 patients, we use142

GPT-4 to aggregate semantically similar concepts, ensuring each concept’s uniqueness and relevance. The143

final concept bank consists of 47 concepts for FA, 30 for ICGA, and 26 for US, with an average of 3 concepts144

for FA, 2 for ICGA, and 5 for US per patient. The comprehensive list of all N = 103 concepts is presented145

in Supplementary Table A2. To validate that the concepts extracted by the LLM accurately represented146

real-world clinical reasoning, two senior ophthalmologists specializing in diagnosing and managing choroidal147

tumors at Beijing Tongren Hospital were asked to verify and amend the concepts. Quantitatively, the initial148

concept bank constructed by GPT-4 was assessed to be reasonable and relevant, requiring only minor modi-149

fications: 5 concepts were removed, and 8 new ones were added to the FA category, 4 to the ICGA category,150

and no changes to the US category.151
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To ground concepts as feature embeddings, we employed support vector machines (SVMs) for concept-152

level binary classification. We used image representations from a pre-trained model as input and binary153

derived from the concept construction process as labels. Images associated with assigned concepts were154

used as positive samples and all other images were used as negative samples. The classification hyperplane155

vector from each SVM serves as the concept’s representation, which we refer to as concept activation vec-156

tors (CAVs) [29]. Subsequently, in MMCBM, an image is projected into the space of concepts to estimate157

the input image alignment with any given modality-specific concept. The alignment scores are then used158

as input into a linear classifier to predict the relative probabilities of each of the three targeted choroidal159

diseases. Fig. 3a shows this process and shows the top-k concepts derived from concept scores to explain160

the model’s predictions.161

162

Noninferior Accuracy of MMCBM to Black-Box Model163

A common critique of interpretable machine learning models is that enforcing priors on the model, such as164

requiring input images to align with concept activation vectors, is equivalent to adding additional regulariza-165

tion to the hypothesis space [30]. Such constraints may adversely impact the performance of trained models166

[31, 32]. To this end, we sought to evaluate the classification performance of our MMCBM model against167

the black-box pre-trained multimodal classifier baseline (Fig. 3). On the MM testing dataset, MMCBM168

achieved an overall classification F1 score of 91.0% (95% CI: 88.2 - 93.4%), which is comparable with the169

performance of the baseline black-box model (89.2%; 95% CI: 87.9 - 90.6%). These results show that the170

MMCBM framework is non-inferior to the black-box pre-trained model. We attribute this improvement to171

the fact that by adding interpretable regularization, the framework mitigates the issue of class imbalance172

in the data. Additionally, comparing classifier performance across unimodal imaging inputs revealed no173

statistically significant differences in classification metrics (Table A1). This indicates that our MMCBM174

framework matches the performance of black-box approaches in automating the diagnosis of rare choroidal175

tumors according to clinically relevant metrics.176

177

Integration of MMCBM in Clinical Workflows178

We have shown that the MMCBM effectively leverages prior knowledge from domain experts to represent179

input data aligned with interpretable concepts. However, it remains unknown whether our framework180

can provide real-world utility in augmenting existing clinical workflows. To investigate the applications of181

MMCBM in clinical practice, we recruited the help of 8 doctors from Beijing Tongren Hospital: 2 senior182

ophthalmologists specializing in the diagnosis and management of choroidal melanomas, and 6 resident183
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ophthalmologists in training. We assessed the diagnostic performance of ophthalmologists alone against184

ophthalmologists with our trained MMCBM model. In order to avoid the memorization of the seen cases,185

the time lapse between the experiments w./w.o. the generated concepts is 2 months. The ophthalmologists186

leveraging our MMCBM model for diagnostic workflow augmentation have access to the top-10 activated187

concepts from the MMCBM concept bank and can adjust the confidence scores of the concepts based on188

their judgment. This human-in-the-loop interactive feature improves the practical utility of MMCBM in189

clinical decision-making, fostering a more collaborative and accurate diagnostic process. For the 6 junior190

ophthalmologists, the average accuracy is 51.9%, precision 40.5%, recall 40.9%, and F1 score 38.5%; with191

the aid of our MMCBM model, their accuracy improves to 65.5%, precision to 54.3%, recall to 55.5%, and192

F1 score to 54.7% (Fig. 3[d-e]). The 2 senior ophthalmologists demonstrate a high diagnostic accuracy at193

baseline of 91.4%, precision of 85.8%, recall of 83.6%, and F1 score of 84.6%. When augmented with the194

model’s predictions, their performance remains relatively unchanged with an accuracy of 91.4%, precision195

of 86%, recall of 85.8%, and F1 score of 85.7%. In particular, the use of MMCBM improves junior doctors’196

performance by 42% on the F1 score. These results not only validate the quality and precision of the pre-197

dicted concepts of our MMCBM model but also highlight our model’s ability to serve educational purposes198

by improving the diagnostic accuracy of less experienced doctors for complex and rare diseases.199

200

Comparison between MMCBM and Alternative Feature Embedding Methods201

Given the recent progression of cross-modality foundation models, it may be possible to leverage existing202

feature embedding models trained on extensive corpora of medical information to represent input ocular203

imaging data and concepts. This approach might offer greater generalizability and require less effort than204

our MMCBM setup. To evaluate this alternative framework, we compared our concept embedding procedure205

and image feature extraction with those using Contrastive Language-Image Pre-training (CLIP) [12] and206

its biomedical variants, including MedCLIP [33] and BioMedCLIP [34], which are specifically fine-tuned207

for medical data. Briefly, MedCLIP was fine-tuned on multiple Chest X-ray datasets, while BioMedCLIP208

underwent fine-tuning on 15 million figure-caption pairs extracted from biomedical research articles in209

PubMed Central. Our results suggest that all assessed CLIP-based frameworks perform significantly worse210

than our CAV-based feature extraction method used in our MMCBM framework (Fig. 3[b-c]). As exepcted,211

methods fine-tuned on specialized medical datasets—such as MedCLIP and BioMedCLIP—outperform212

the generic CLIP model as feature extractors for choroidal disease diagnosis using both multimodal and213

unimodal image inputs (Fig. 3[b-c], MedCLIP: 52.5% (95% CI: 47.2 - 59.6%), BioMedCLIP: 57.2% (95%214

CI: 54.7 - 59.6%), CLIP: 28.8% (95% CI: 26.2 - 31.3%)). The analysis of unimodal input results and215
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additional classification metrics further aligns with these findings. Specifically, embedding model inputs216

with expertise-curated knowledge significantly outperforms the use of general domain knowledge. These217

observations highlight the necessity for fine-tuning and domain-specific adaptation or embedding images218

and texts in medical applications. Furthermore, they affirm the efficacy of our MMCBM as a viable and219

effective means to achieve model interpretability without compromising algorithmic performance.220
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Evaluation of Image-Concept Alignment222

Our MMCBM demonstrates classification performance on par with state-of-the-art black-box models and223

offers interpretable insights into final model outputs. We have also shown that the quality of model inter-224

pretability depends on the quality of (1) the prior knowledge used to construct the MMCBM concept bank;225

(2) the image and concept embedding functions, and (3) image-concept alignment. We shought to evaluate226

our model’s interpretability according to these three aspects.227

First, we evaluated the MMCBM feature representations and their accuracy in describing input images.228

Model representations for each of FA, ICGA, and US imaging studies were computed by the respective229

MMCBM encoders before leveraging t-SNE [35] dimensionality reduction techniques to visualize the complex230

feature landscapes from our multimodal dataset (Fig. 4a). We observe distinct clusters corresponding to,231

hemangioma, metastatic carcinoma, and melanoma, indicating effective class separation by the MMCBM232

encoders. Qualitatively, the clusters corresponding to multimodal data inputs appear more cohesive and233

less dispersed, suggesting that integrating multi-modal inputs may improve the separability of the different234

class representations in this representation space. This enhanced clustering density may contribute to the235

improved discriminative performance of our multimodal MMCBM models in contrast to models with only236

unimodal inputs accessible.237

Next, we evaluated the quality of the MMCBM concept representation and image-concept alignment238

by examining the accuracy of the SVM classifiers employed in generating concept vectors for each medical239

concept. A high SVM accuracy score indicates a concept’s representational effectiveness and consistent240

presence across the dataset. According to this metric, FA and ICGA concepts achieve high accuracy across241

the board (Fig. 4b), with accuracy on test data exceeding 90% for all concepts. This suggests that concepts242

derived from FA and ICGA are well-represented and aligned with the input images. In contrast, though243

less accurate, the accuracy scores for US-based concepts are still higher than 80% for all concepts. This244

suggests that classifying diseases from ultrasound images alone may be more challenging. Specific details of245

the individual concepts and their corresponding accuracies are detailed in Supplementary Table A2.246

To further assess the quality of MMCBM concept-based interpretability, we examined how well the model247

concepts align with ophthalmologist annotations. We selected the top-k concepts predicted by MMCBM248

for each patient in the multimodal testing dataset. In Fig. 4c, we quantify our model’s alignment with249

expert annotations according to key performance metrics: Precision@k, Recall@k, F1@k, Median-Rank@k,250

Mean-Rank@k, and Mean-Reciprocal-Rank-(MRR)@k, with k = 10. We compared two setups of concept251

banks: the report-extracted and the expert-verified. We found that report-extracted concepts achieved Pre-252

cision@10 = 0.53 and Recall@10 = 0.57, similar to expert-verified concepts (Precision@10 = 0.54, Recall@10253
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= 0.55). It is worth noting that expert-verified concepts yielded better alignment with expert annotations,254

suggesting that human intervention in the verification process improves the concept bank’s ability to255

capture domain knowledge. Our analysis demonstrates that the MMCBM model concepts extracted from256

reports closely match the performance of expert-verified annotations across various metrics. This suggests257

that report-extracted concepts achieve interpretability comparable to expert-verified concepts, negating the258

need for time-intensive expert annotation while effectively capturing the salient clinical features of interest259

to ophthalmologists.260

261

Demonstration of Human-Model Interaction262

To exemplify a practical engineered system for enabling human-model interactions, we make available our263

website (https://mmcbm.liuy.site) used for this user-based study with the eight ophthalmologists. Our264

website provides a user-friendly online interface for concept bank verification and predication evaluation.265

The annotation system allows ophthalmologists to upload de-identified images and annotate them with clin-266

ically meaningful concepts (Fig. 5a) or verify images along with report extracted concepts. The prediction267

system can accept FA, ICGA, and/or US images, and use them to output imaging concepts with confidence268

scores (Fig. 5b). In instances where MMCBM may produce erroneous concept predictions, clinicians can269

easily adjust the confidence scores of individual concepts within the user interface. Such adjustments can270

refine and correct model predictions to better align them with clinical findings that may be otherwise271

inaccessible to the model. This feature of human intervention significantly improves the practical utility of272

MMCBMs in clinical decision-making, fostering a more collaborative and accurate diagnostic process. The273

Fig. 5c displays several examples generated by MMCBM, including a curated selection of representative274

cases processed by the model. Finally, given the model outputs, a basic diagnostic report can be generated275

by leveraging LLMs to interpret the MMCBM outputs and concept activations (Fig. 5d). The generative276

model highlights the top-k activated concepts before presenting the final generated diagnostic report. The277

report generation prompt example is included in Supplementary Fig. A6.278

279

In summary, our results highlight the MMCBM model as a promising tool for clinical decision support.280

While the model’s predictions are accurate on their own, they are most effective when combined with281

human expertise, offering the most comprehensive diagnostic performance and underscoring the potential of282

AI-assisted diagnostics.283
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Date: 2022-12-14Patient ID: *********
FA-early FA-middle FA-late

ICGA-early ICGA-mid ICGA-late

US

Concept Intervention

……

ICGA: Decreasing Fluorescence Intensity  Score: 0.7142

a b

d
Diagnostic Report for Reference Generated by GPT-4 

Diagnosis Recommendations

Choroidal Hemangioma: 95% Choroidal Metastatic Carcinoma: 5% Uveal Melanoma: 0%
Classi�cation

Pathological Features and Likelihood Scores
1. FA-concept: rapid �lling and slow emptying of contrast agent to and from the lesion.                                                               Likelihood Score: 0.75 ……

Summary of Model Output as Prompt

Generated Report for Reference

1. Treatment Plan: Further evaluation and treatment by an ophthalmologist may be required to manage the Choroidal Hemangioma.
2. Follow-up Plan: Regular follow-up appointments with an ophthalmologist for monitoring and management of the condition.

Precautions
1. Patients with Choroidal Hemangioma should pay attention to any changes in vision or eye symptoms and report them to their healthcare provider promptly.
2. Avoid self-diagnosis and self-treatment. Always consult an eye specialist for proper evaluation and management of Choroidal Hemangioma.

Disclaimer
This diagnostic report was generated by ChatGPT for informational purposes only. It should not be used as the sole basis for clinical diagnosis or treatment decisions.
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Examples Generated by MMCBM

1. Venous grouping strong 
�uorescence

2. The boundary of the 
venous visual disk is not 
clear.

1. Changes in strong 
�uorescence in the 
venoous stage 

1.Venous phase cluster-
like strong �uorescence

1. Strong �uorescence in
 venous phase is dominant.

1. The internal echo is 
equal echo.

2. The internal echoes are 
all medium-strong echoes.

1. Secondary retinal 
detachment

2. Flat protuberant solid 
lesions can be detected

1. Venous phase cluster-
like strong �uorescence

2. Surface vasodilation of 
venous phase lesions

1. Changes of strong 
�uorescence in venous 
phase

1. The internal echoes are all 
medium-strong echoes.

2. Hemispherical solid lesions 
can be detected

c

FA: Abnormal Patchy Hypo�uorescence  Score: 0.5675

US: Rapid Filling and Slow Empying of Contrast Agent Score: 0.7536

Fig. 5: Example Human Interactive Interface. We offer a website to facilitate the user interactive study
with ophthalmologists and our trained MMCBM model. (a) Image Display Panel: as FA and ICGA imaging
span various time frames, ophthalmologists pinpoint images from early, medium, and late phases for accurate
classification. (b) Interventions interface on concept bottleneck: a panel that allows adjustment of the concept
scores to refine the final prediction. (c) Visual Emphasis on Bottlenecks: a curated selection of representative
cases processed by the model, highlighting the top-k concepts prioritized by their attention scores in the
weight matrix displayed across three distinct tumor classes. (d) Diagnostic Reporting in Action: an example
of a diagnostic report formulated by ChatGPT during the testing phase. The input to ChatGPT includes
the predicted top-k concepts combined with patient-specific details, highlighting the model’s capability to
produce interpretable diagnoses.
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Discussion284

In this work, we establish the Multimodal Medical Concept Bottleneck Model (MMCBM) as a novel approach285

for the interpretable diagnosis of rare choroid tumors. To facilitate the application of advanced machine286

learning techniques, we initially tackled the significant challenge of scarce comprehensive training data by287

curating the Choroidal Tri-Modal Imaging clinical dataset. This dataset, which includes image data of Flu-288

orescein Angiography (FA), Indocyanine Green Angiography (ICGA), and Ultrasound (US) with associated289

radiology reports, to our knowledge, is the largest dataset of choroidal melanoma. Based on this dataset,290

our MMCBM maintains the accuracy of prior “black-box” models and introduces interpretability through291

the concept bottleneck model. Furthermore, by incorporating the explainable MMCBM into the diagnostic292

workflow, our model significantly enhances the performance of junior ophthalmologists.293

Unlike traditional methods for explainable AI, which often rely on saliency maps [36–38] to highlight294

important spatial attributes, our approach is inherently finding-based and therefore aligns more closely with295

clinical practice by mimicking the diagnostic thought process used by domain experts. Clinicians identify a296

range of descriptive visual features, including textual elements, contrast, shape, and dynamic changes, that297

extend beyond pixel values alone. Traditional approaches to incorporating this additional information and298

prior knowledge typically require either expensive labeling or sophisticated network infrastructure designs to299

integrate clinical insights, thereby limiting the generalized utility of explainable AI tools. Our introduction of300

“concepts” addresses this gap by providing human-comprehensible descriptions that facilitate intervention in301

the diagnostic process. This yields a twofold benefit: it simplifies the alignment between domain knowledge302

in clinical practice and the representational power of neural networks, and it proves immensely beneficial for303

junior doctors, who may lack experience in finding identification and risk over-reliance on AI outputs [39].304

Moreover, recent advancements in vision and natural language processing, such as Large Language Mod-305

els (LLMs) and Contrastive Language–Image Pre-training (CLIP), have paved new pathways for research306

into interpretable diagnostic systems. However, for rare diseases like choroidal melanoma, the scarcity of307

paired image-text knowledge on the internet presents a significant challenge to the reliability of these mod-308

els’ reasoning capabilities, as evidenced in Fig. 3. While professional annotation of high-quality data can309

mitigate this issue, further data access and expertise challenges remain [33], especially for rare diseases. Our310

concept-based multimodal model circumvents these challenges by utilizing LLMs to process texts without311

necessitating detailed labeling of image features. The model’s predictive and interpretive power stems from312

integrating the pre-trained model with the extracted relationship between reports and images. This approach313

mitigates the data scarcity issue for rare diseases in recent foundation models, avoiding the need for extensive314

labeling efforts in medical AI preparation, thus making the design extendable to other rare diseases.315
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In the realism of AI-aid medical diagnosis, particularly for the detection and intervention of serious316

diseases like the choroid neoplasias we considered in the current work, ethical considerations are of critical317

importance [40]. Our methodology, which enables human-in-the-loop feedback, helps address this issue by318

aligning human expertise with AI diagnosis. Specifically, by actively involving domain experts in the training319

and validation phases of AI model development, we not only ensure that the AI’s diagnostic concepts are320

vetted by experienced clinicians but also provide feasible constraints of the degree of AI intervention. This321

reduces the risk of hallucinations that could arise from sole reliance on AI. This approach may foster trust322

among clinicians and patients in AI-assisted medical decisions. The inclusion of HITL integration in our AI323

models aligns with ethical guidelines for AI in healthcare, emphasizing the safeguarding of patient dignity324

and privacy. As we advance the frontiers of medical AI, it is crucial to maintain a balanced synergy between325

technological innovation and ethical responsibility, ensuring that AI serves as a supportive tool rather than326

a replacement for the nuanced judgment of medical professionals.327

While our results presented in the study are promising, it nonetheless has limitations. Firstly, the multi-328

modal data can be noisy due to inconsistencies in image acquisition and labeling. Our filtering pipeline329

improves data quality, as confirmed by human expert evaluation, but it still requires careful oversight to330

ensure that the MMCBM concepts are well aligned with prior knowledge. Secondly, as with any application331

of machine learning in healthcare, the clinical implementation of such models requires rigorous valida-332

tion through prospective studies and randomized clinical trials. Collaboration with regulatory bodies will333

ensure these diagnostic tools meet safety, efficacy, and equity standards. We hope to explore the capacity of334

MMCBMs and other interpretable models to meet these standards in future work.335

In summary, the development of MMCBMs marks a significant advancement toward achieving inter-336

pretable and reliable diagnoses within the healthcare domain. As efforts to refine and incorporate these337

models into clinical workflows progress, it is imperative to carefully consider the ethical and regulatory338

dimensions to ensure that these innovations enhance patient outcomes without compromising the standards339

of care or jeopardizing patient safety. This work delineates a promising avenue for applying artificial intelli-340

gence in the nuanced and critical field of diagnosing rare diseases, offering a blueprint for future explorations341

in this vital area of medical research.342

Materials and Methods343

Dataset Collection and Ethics Statement. The patient data in the CTI dataset were collected at Beijing344

Tongren Hospital from January 2004 to December 2022 (Approval No. TRECKY2018-056-GZ(2022)-07). To345

our knowledge, it is the largest clinical database containing multimodal data from patients with choroidal346
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melanoma and other closely related ocular pathologies. This extensive database contains diagnostic and347

pathological data of patients with choroidal diseases. The database includes a total of 925 cases, which348

comprise 161 cases of choroidal hemangioma, 82 cases of choroidal metastatic carcinoma, and 682 cases of349

choroidal melanoma. The image collection includes three types of radiological images: fluorescein angiogra-350

phy (FA), indocyanine green angiography (ICGA), and Doppler ultrasound images (US). Each patient has351

one or more modalities of images. The FA and ICGA images, being time-series, were captured from three352

angles: 30, 55, and 102 degrees. The US images include two types: B-mode ultrasound and color Doppler353

ultrasound. Medical professionals have thoroughly reviewed the data-cleaning process to ensure its integrity354

and clinical relevance. For FA and ICGA modalities, we ignored the shooting angle and categorized the FA355

and ICGA images into three periods—early, middle, and late—in alignment with existing clinical diagnostic356

recommendations. The time frames for these periods are as follows: ICGA (Early: less than 5 minutes; Mid-357

dle: between 5 and 20 minutes; and Late: at least 20 minutes) and FA (Early: less than 5 minutes, Middle:358

between 5 and 10 minutes, Late: at least 10 minutes). We selected binocular color Doppler images contain-359

ing blood flow information for the US modality. Finally, the cleaned dataset includes a total of 750 cases,360

which comprises 128 cases of choroidal hemangioma, 80 cases of choroidal metastatic carcinoma, and 542361

cases of choroidal melanoma. There are 53 patients with choroidal hemangioma, 38 patients with choroidal362

metastatic carcinoma, and 194 patients with choroidal melanoma with all three imaging modalities, which363

we refer to as multi-modal (MM) data. Additionally, 97 cases have clinical diagnostic reports that describe364

the radiological features observed in the FA, ICGA, and US images. Informed consent was obtained from all365

patients whose anonymized and de-identified data is included in the dataset. Per the Declaration of Helsinki366

2000, the collecting organization obtained written informed consent from the patients.367

368

Data Splitting. To optimize data utilization and establish reliable evaluation indicators, we initially allo-369

cated 20% of patients with all three imaging studies as the test set and performed 5-fold cross-validation at370

the patient level on the remaining data. Specifically, the remaining data is split into five folds based on each371

pathology and modality. Data augmentation techniques were applied during training, including random hor-372

izontal flipping, random rotating, and random zooming. To build the multi-modal concept banks, we used373

97 diagnosis reports, comprising 39 cases of choroidal hemangioma, 18 of choroidal metastatic carcinoma,374

and 40 of choroidal melanoma. Each report included three modal images and prompted GPT-4 to extract375

relevant medical concepts from reports. The prompts are detailed in Supplementary Fig. A5, and the376

extracted concepts are in Supplementary Table A2.377

378
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Model Training. Consider a training dataset Dtrain = {(x, r, y)} comprising image-report pairs, where379

x ∈ X represents a fundus image (of any imaging modality), r ∈ R is the clinical patient report collected380

by doctors, y ∈ Y := {hemangioma, carcinoma,melanoma} is the corresponding disease label. We utilize381

GPT-4 to analyze the reports and extract relevant concepts, represented as a function LLM : R → C382

where C is the space of concepts. We can then prompt GPT-4 to combine concepts with the same semantic383

meaning, resulting in a compressed representation of N concepts C = {c1, c2, ..., cN}. Using a pre-trained384

multi-modality backbone ϕ : X → Z capable of mapping different modality images into a shared feature385

space, we can generate bottleneck embeddings to establish a concept bank, denoted as ZC ∈ RN×d, where386

N is the number of concepts and d the size of the embedding space of ϕ. Row i of the two-dimensional387

matrix ZC represents the learned representation of the ith concept ci obtained through Concept Activation388

Vectors (CAVs) [29]. MMCBM generates a prediction ŷ = g (sim (ϕ(x),ZC)). The function sim : Rd → RN389

computes the concept scores by calculating the similarities between image features and each element of the390

concept bank ZC . The function g : RN → Y predicts the final label based on the concept scores, serving as391

an interpretable predictor. To learn the MMCBM, we solve the following problem:392

min
g

E
(x,c,y)∼D

L [g (sim (ϕ(x),ZC)) , y] (1)

where ϕ(x) is the projection to the concept space and L is the cross-entropy loss. To ensure that final393

prediction ŷ can be easily derived from input sim(ϕ(x),ZC), we model g as a linear classifier.394

395

Evaluation of Model Performance. Using a 5-fold cross-validation framework, we report the macro-396

averaged metrics accuracy, precision, recall, and F1 score, which considers both precision and recall while397

addressing potential class imbalances. In addition to these traditional classification metrics, we also focused398

on interpretability metrics such as Precision@k, Recall@k, Mean Rank@k, and Median Rank@k. Precision@k399

measures how many of the top-k identified concepts were right compared with the annotated ground truth.400

Recall@k evaluates the ratio of correct concepts in the first k predictions to all correct concepts for the401

patient. F1@k is the harmonic mean of Precision@k and Recall@k. Mean Rank@k and Median Rank@k402

indicate the average ranking position of the correct concept; lower scores are better.403
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Data and Code Availability404

Due to legal restrictions on the patients’ privacy information, the complete raw dataset cannot be made405

publicly available. However, we will release the processed data, codes, and trained model to enable repro-406

ducibility of the results. The code is currently available at https://github.com/ly1998117/MMCBM and will407

be moved to a permanent address upon acceptance.408
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Appendix A496

A.1 Supplementary Results497

A.1.1 Varying the Image Encoder Size498

To further explore the impact of encoders’ size on the efficacy of pretrained models and MMCBMs, we under-499

took a study incorporating three variants of EfficientNet encoders: efficientnet-b0, efficientnet-b1, and500

efficientnet-b2—each integrated separately within the respective modalities. Figure A2 shows the rela-501

tionship between encoder size and pivotal performance metrics, depicted across three detailed comparative502

bar plots which focus on two key aspects: classification performance and model interpretability.503

Figure A2[a-b] show the accuracy, precision, recall, and F1 scores of the resulting models. Our results504

demonstrate high performance across the board with negligible differences between the encoder sizes, as505

evidenced by the closely clustered bars and their associated error margins.506

Regarding the interpretability of MMCBMs, Figure A2c shows a consistent performance trend across507

the different encoders, without any marked disparity in the results. This section of the figure examines the508

precision@k, recall@k, and F1@k metrics, alongside mean rank@k, median rank@k, and mean reciprocal509

rank@k for predicted Top-k concepts.510

Drawing from these insights, we selected efficientnet-b0 as the encoder for our MMCBMs. This deci-511

sion is underpinned by the encoder’s ability to deliver high classification accuracy and robust interpretability,512

while also ensuring a more compact model with fewer parameters. efficientnet-b0 strikes a balance513

between maintaining performance standards and optimizing computational efficiency, which is particularly514

advantageous in scenarios where resource constraints are a key consideration.515

A.1.2 Ablation Study for the Concept Bank516

To further explore the efficacy of the Multi-modal Medical Concept Bottleneck Model (MMCBM), an ablation517

study was conducted, focusing on two critical aspects of the model: the concept extraction from diagnostic518

reports and the verification of these concepts. Our primary aim was to compare the impact of varying the519

number of reports and concepts on the performance of two distinct concept banks: the Report-Extracted520

Concept Bank and the Expert-verified Concept Bank. Such a comparison is intended to shed light on the521

relative influence in the overall functioning of the MMCBM.522

Report-Extracted Concept Bank: In our study, we first prompt the LLM to extract concepts from a set523

of 97 diagnostic reports. Then those image-concept pairs are used directly to generate a multi-modal concept524

bank with CAVs.525
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Expert-verified Concept Bank: Subsequently, the concepts derived from the LLM were meticulously526

reviewed by two experienced ophthalmologists. Their role was to verify the accuracy of the concept extraction,527

remap the relationships between images and concepts, and rectify any inaccuracies found in the initial concept528

set. This refined collection of concepts, validated and enhanced by medical expertise, was termed the Expert-529

verified Concept Bank. To streamline this verification and correction process, we developed a specialized530

web interface (Fig. 5). This interface empowered the ophthalmologists to efficiently identify and correct531

erroneous concepts, delete irrelevant or incorrect entries, and introduce additional concepts as necessary.532

The impact of varying the number of concepts. The first part of the ablation study assessed the perfor-533

mance impact of varying the number of concepts extracted from these reports. For both the Report-Extracted534

Concept Bank and Expert-verified Concept Bank, a noticeable trend in the FA and ICGA modalities535

showed performance improvements as the number of concepts increased, plateauing at higher concept counts.536

Specifically, for concept counts below 60, the US modality demonstrated marked improvements. Conversely,537

exceeding 60 concepts led to a notable decline in performance, suggesting an influx of potentially irrelevant538

or ‘bad concepts’, as indicated on our graphs. Interestingly, for the Report-Extracted Concept Bank, this539

trend was also apparent in the MM modality when the concept counts around 80. However, for Expert-540

verified Concept Bank, there is no exhibit significant decrease in performance, underscoring the importance541

of concept relevance and quality in the bank.542

The impact of varying the number of reports. In the second part of our ablation study, shown in543

Figure A4, we varied the number of reports from 7 to 97. Contrary to our expectations, the performance544

metrics remained relatively stable across this range, thereby supporting the conclusion that the model’s545

effectiveness is not substantially influenced by the quantity of reports. This observed stability in performance546

metrics, even with a limited number of reports, may be attributed to the comprehensive nature of the547

concepts contained within these reports. It appears that even a smaller set of templated reports encompasses548

a sufficient range of concepts. This suggests that the key determinants for model performance lie not in the549

sheer quantity of reports, but rather in the richness and relevance of the concepts they encompass. Notably,550

despite the general stability in performance across both concept banks, the Expert-verified Concept Bank551

consistently exhibited more robust and superior performance. This finding further emphasize the critical role552

of concept validity in enhancing model accuracy.553

A.2 Supplementary Methods554

Interpretable Predictor. We trained a linear layer, denoted as the interpretable predictor g, to learn the555

preferences (weights) of specific categories for certain concepts. Then, we linearly combined these weights556
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and used a multi-modality concept score Cscore as the only input to obtain the final prediction. Here, Cscore557

represents the similarities between image features and each row within the concept bank ZC . To measure the558

attention of the predictor on an image’s concept score, we applied a sigmoid activation function to the weight559

and performed an element-wise multiplication between this activated weight and concept score to produce560

the attention matrix Watten. Formally, considering W as a learnable matrix and σ as the sigmoid activation561

function, the prediction Ŷ was determined by Ŷ = argmax (
∑

Watten), where Watten = Cscore ⊙ σ(W ) and562

⊙ represents the element-wise multiplication.563

Model Inference The Concept Bottleneck Model involves the initial transformation or mapping of the564

input data into a representation comprising a set of concepts, which are subsequently utilized for prediction.565

During the reasoning stage, the CBM model’s interpretability is primarily demonstrated by its ability to566

provide clear explanations of how each concept contributes to the predicted results.567

Report Generation. Medical report generation (MRG) is a task that involves automatically generating a568

descriptive narrative report in the medical domain based on a given medical image. By utilizing our proposed569

interpretable predictor and predicted concept activation scores, we can extract multiple concepts associated570

with an image. This can be done by selecting either the top-k concepts or those that exceed a predetermined571

threshold. It is important to note that clinical diagnosis reports follow a structured format that includes572

components such as patient information, medical details, diagnosis, treatment recommendations, and other573

relevant information. Consequently, it becomes feasible to generate standardized clinical diagnosis reports574

by effectively combining the predicted concepts and prompting a Large Language Model (LLM) to produce575

comprehensive reports.576

Test-time intervention. A salient difference between CBMs and standard models is that a practitioner577

utilizing a CBM model can interact with it by intervening on concept predictions. This ability to intervene578

on concept bottleneck models enables human users to have richer interactions with them. This kind of test-579

time intervention can be particularly useful in high-stakes settings like medicine. For example, “correcting”580

the model by replacing the j-th concept value ĉj with the ground truth value cj , and then updating the581

prediction Ŷ after this replacement. We can qualitatively see the contribution of each concept by removing582

the concept and seeing the changes in the corresponding prediction’s output Ŷ = g(Ĉscore), where Ĉscore =583

(ĉ{1,...,N}\j , cj).584

A.3 Implementation Details585

In the initial assessment of our dataset, we encountered several quality issues. These included discrepancies586

between diagnostic reports and classification labels, images that were entirely black, blurred images with587
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noise, and instances of data being saved twice. To address these, we implemented a rigorous data-cleaning588

process. Firstly, we removed all modalities containing entirely black images. Secondly, we eliminated images589

of poor quality, which included those with excessive blurring and noise. Thirdly, we deleted any duplicate590

images to ensure each data point was unique.591

In our approach, we employ an early stopping mechanism to efficiently mitigate overfitting and save592

training time. Additionally, we perform standardization and normalization on the input images. To train593

the network, we set the initial learning rate to 10−4, and the weight decay factor to 10−2 for the Adam594

optimizer. The network is trained for 200 epochs, with a batch size of 8. All experiments were implemented595

using the NVIDIA GeForce TiTAN XP GPU and a RAM capacity of 12 GB.596

The MMCBMs underwent training and evaluation under similar conditions to previous models, with the597

notable difference of a learning rate set at 10−3.598
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FA ICGA US ALL

Fig. A1: Extended details of comparative human evaluation for two concept bank generation
methods across multiple modalities. Each row displays key retrieval metrics: precision@k, recall@k, and
F1@k, as well as median rank@k, mean rank@k, and mean reciprocal rank@k. Each column corresponds to
various data modalities: FA, ICGA, US, and ALL. The ‘ALL’ category represents the aggregation of top-k
concepts derived from FA, ICGA and US.
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b

c

Fig. A2: Comparing different image encoder sizes. (a) Comparative bar plot illustrating classification
performance metrics of the pre-trained model employing different encoders (b0, b1, b2): accuracy, precision,
recall, and F1 scores. Notably, the best-performing model on the validation dataset was chosen for evaluation.
Metrics are represented as mean values, with error bars indicating the 95% confidence interval based on 5-
fold cross-validation on the test dataset. (b) A similar comparative bar chart is shown for the performance
metrics of MMCBMs, illustrating how varying encoder sizes impact their classification effectiveness. (c)
Metrics of predicted Top-k concepts of MMCBMs with different encoders (b0, b1, b2) on test dataset with
k = 10. This evaluation includes precision@k, recall@k, and F1@k, as well as mean rank@k, median rank@k,
and mean reciprocal rank@k.
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FA ICGA US MM

Fig. A3: Ablation Study Highlighting Dependency on Concept Bank Size. The concept bank,
devised leveraging reports from 100 patients with tri-modality images, forms the basis of this examination. (a)
Report-extracted concept bank. The initial set of figures (first row) showcases the impact of Report Volume:
This set of graphs portrays how adjusting the total number of reports impacts the model’s performance
metrics—precision, accuracy, recall, and F1 score. The subsequent set of figures (second row) explores the
effect of Concept Count: By altering the number of disease-associated concepts, we analyze how the model’s
performance metrics fluctuate. This study assists in understanding the optimal number of concepts required
for reliable diagnosis. (b) Expert-verified concept bank. We maintains identical experimental settings to (a)
for direct comparability.
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FA ICGA US MM

Fig. A4:Ablation Study on Number of Reports. The concept bank, devised leveraging reports from 100
patients with tri-modality images, forms the basis of this examination. (a) Report-extracted concept bank.
The initial set of figures (first row) showcases the impact of Report Volume: This set of graphs portrays how
adjusting the total number of reports impacts the model’s performance metrics—precision, accuracy, recall,
and F1 score. The subsequent set of figures (second row) explores the effect of Concept Count: By altering
the number of disease-associated concepts, we analyze how the model’s performance metrics fluctuate. This
study assists in understanding the optimal number of concepts required for reliable diagnosis. (b) Expert-
verified concept bank. We maintain identical experimental settings to (a) for direct comparability.
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a
Report Extraction

😃You are now a medical expert specializing in the study of three diseases: 
choroidal melanoma, choroidal hemangioma, and choroidal metastatic 
carcinoma. You are familiar with the imaging features of these diseases using 
three modalities: fluorescein angiography (FA), indocyanine green angiography 
(ICGA), and Doppler ultrasound (US). I will provide you with a patient's 
diagnostic report shortly, which includes descriptions of imaging features from 
multiple modalities. I need you to extract several concise conceptual 
representations from it.

😃Here is an example for you:
Imaging feature: FA, subretinal clumps of weak fluorescence can be seen in 
the temporal macula during the venous phase, with fluorescence increasing 
over time and late-stage lesions primarily showing staining. Synchronous 
ICGA lesions consistently exhibit hypofluorescence.
Concepts: 
FA, Subretinal clustered hypofluorescence
FA, Increasing fluorescence intensity
FA, Late-Stage staining
ICGA, Consistently hypofluorescence

Please present the extracted concepts in a table format as much as possible.

Okay, I am ready to provide the extracted concepts based on the patient's diagnosis 
report in the required format.

Okay, I am ready to extract and analyze the imaging features of choroidal 
melanoma, choroidal hemangioma, and choroidal metastatic carcinoma based on 
the patient's diagnosis report. Please provide a description of the modal images 
included in the diagnosis report. I will use my understanding of fluorescein 
angiography (FA), indocyanine green angiography (ICGA), and Doppler 
ultrasound (US) to extract key concepts of imaging features for you.

b Concept Aggregation

😃A long sentence can be split into multiple phrases, with the phrases excluding 
unnecessary verbs. These phrases can form a concept library. You are 
currently a concept library that merges duplicate concepts, and it is prohibited 
to store multiple similar concepts in the library. When I input an [id, concept], 
you first search for semantically similar concepts in your own concept library. If 
found, you store my id in the corresponding entry; if not found, you create a 
new input concept. The concept library is stored in CSV format as 
[id1&id2&id3...,concept].

😃Semantically similar is about keyword repetition, only extract key information, 
to give you an example. For example, the meaning of cluster 
hyperfluorescence is similar to that above the optic disc; the internal echo is 
similar to that of the lesion, and the iso-echo is mainly similar; the rich blood 
flow signal in CDFI lesions is similar to that in CDFI lesions.

OK, please enter your id+ concept, if you enter more than one, I will build one by one.

How to determine semantic similarity?

Fig. A5: Detailed GPT-4 Prompts. (a) Concept Extraction Prompts. This part details the prompts
used for extracting concepts from diagnostic reports, forming a unique concept library. (b) Concepts Aggre-
gation Prompts. This part describes the prompts for aggregating semantically similar concepts, ensuring
each concept’s uniqueness.
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Report Generation

😃
You are now a medical expert specializing in the study of three diseases: 
choroidal melanoma, choroidal hemangioma, and choroidal metastatic 
carcinoma. You are familiar with the clinical features of these diseases and 
their corresponding imaging modalities, including FA, ICGA, and Doppler 
ultrasound (US). Your task is to generate patient diagnostic reports based on 
the diagnosed disease and its clinical feature descriptions using Markdown 
format that conforms to standard diagnostic report format. Here is a reference 
template: 
“Diagnostic report\n patient Information\n -name:\n -Sex: \n -Age: \n Diagnostic 
Features \n -chief complaints and symptoms: \n Diagnostic results \n-Imaging 
findings: \n-other relevant examinations and findings:\n diagnostic 
recommendations \n - Preliminary diagnosis: \n -treatment plan: \n-follow-up 
plan and arrangement: \n ## precautions \n -matters that patients need to pay 
special attention to: \n -Preventive measures and health advice: \n ## ChatGPT
generation statement \n -this diagnostic report is generated by ChatGPT It is for 
reference only, not as a basis for clinical diagnosis.”

Okay, please provide me with the feature description and preliminary diagnosis 
results of the image, as well as any other information. I will fill in the content and 
generate a standard diagnostic report. If patient information is missing, I will label 
it as [unknown]. Other information will be automatically generated based on the 
feature description and preliminary diagnosis results.

Fig. A6: Detailed GPT-4 Report Generation Prompts. The prompt used for generating patient
diagnostic reports based on extracted concepts and diagnosed diseases are shown.
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Fig. A7: Details of the MMCBM Framework Module Design. (a) Illustration of the multi-modal
pre-trained prediction model, where images from distinct modalities are transformed into features through
dedicated encoders and merged by an attention-pooling block to determine the final classification predic-
tion. (b) Feature Fusion Process via the Attention Pool Module. (c) Linear Layer Mechanism: a trainable
weight matrix is optimized to predict tumor classes based on concept scores, with the concept activation
score—derived from the Hadamard Product—elucidating the relationship between the current images, rep-
resenting individual patients, and the respective concepts to support prediction.

Fig. A8: Details of the Performance Benchmark with Junior Evaluators.
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Table A1: Comparative Performance of Pre-trained Classifier and MMCBM on the hold-out test datasets.

Test Dataset Metrics with 95% Confidence Interval
ModalModel

F1-scoreRecallPrecisionAccuracy
78.3% (74.0 – 81.7%)78.9% (76.0 – 81.8%)78.6% (73.8 – 82.6%)84.8% (82.1 - 86.9%)FA

Pre-trained
85.9% (83.7 – 88.2%)88.4% (86.4 – 90.6%)85.5% (82.8 – 88.0%)90.3% (88.6 - 92.4%)ICGA

72.1% (67.1 – 76.7%)71.5% (66.4 – 75.6%)73.5% (68.7 – 78.0%)81.4% (77.2 – 84.5%)US

89.2% (87.9 – 90.6%)89.2% (88.0 – 90.9%)89.8% (87.9 – 92.1%)92.8% (91.7 – 93.8%)MM

76.2% (69.9 – 82.5%)72.6% (66.0 – 79.0%)82.9% (76.4 – 89.3%)84.1% (81.0 - 87.6%)FA

MMCBM
84.9% (77.3 – 89.4%)83.8% (77.2 – 87.2%)91.5% (89.0 – 95.0%)91.7% (89.7 - 93.4%)ICGA

65.6% (62.5 – 68.7%)64.5% (61.1 – 68.2%)68.3% (65.0 – 71.8%)79.0% (76.9 – 81.0%)US

91.0% (88.2 – 93.4%)90.0% (86.9 – 93.4%)93.0% (90.9 – 94.5%)94.5% (93.4 – 95.5%)MM

33



Table A2: List of report-extracted concepts and the corresponding accuracy of SVMs.

TestTrainConceptTestTrainConcept
0.97 0.99 ICGA, Rich Vascular Network within the Lesion0.99 1.00 FA, Patchy (“Stippled”) Hypofluorescence
1.00 1.00 ICGA, “Double Circulation” Pattern0.98 0.98 FA, Abnormal Vasodilation at the Lesion Surface
0.94 1.00 ICGA, Constant Hypofluorescence0.99 0.98 FA, Rich Vascular Network within the Lesion
1.00 0.99 ICGA, Pinpoint Hyperfluorescence0.94 0.99 FA, Pinpoint Hyperfluorescence
1.00 1.00 ICGA, Large Fluorescence Changes in Venous Phase1.00 1.00 FA, Pinpoint Hyperfluorescence in Arteriovenous Phase

0.99 1.00 ICGA, Late-Stage Hyperfluorescence Predominates0.99 1.00 FA, Increasing Fluorescence Intensity During the 
Arteriovenous Phase

1.00 1.00 ICGA, Clustered Venous Phase Hyperfluorescence1.00 1.00 FA, Large Fluorescence Changes in Arterial Phase
0.99 0.99 ICGA, Large Fluorescence Changes1.00 1.00 FA, Hyperfluorescence Primarily During Arterial Phase
1.00 1.00 ICGA, Predominant Hyperfluorescence0.99 1.00 FA, Clustered Hyperfluorescence in Arterial Phase
1.00 0.99 ICGA, Dynamic Hypofluorescence Changes0.99 1.00 FA, Rich Vascular Network in Early Arterial Phase
0.95 1.00 ICGA, Predominant Hypofluorescence1.00 1.00 FA, Clustered Hyperfluorescence During Early Arterial Phase

1.00 1.00 ICGA, Decreasing Fluorescence Intensity0.99 0.99 FA, Abnormal Vasodilation on the Lesion Surface During 
Venous Phase

1.00 1.00 ICGA, Gradually Increasing Fluorescence Intensity Over Time1.00 1.00 FA, Rich Vascular Network in Venous Phase

0.99 1.00 ICGA, Clustered Hyperfluorescence0.98 0.99 FA, Abnormal Pinpoint Hyperfluorescence During Venous 
Phase

0.95 0.99 ICGA, Clustered Hypofluorescence1.00 1.00 FA, Hemispherical Solid Lesions During Venous Phase
1.00 1.00 ICGA, Late-Stage ‘Double Circulation’ Pattern in Lesions1.00 1.00 FA, Large Fluorescence Changes in Venous Phase
1.00 1.00 ICGA, Constant Late-Stage Fluorescence1.00 1.00 FA, Hyperfluorescence Primarily During Venous Phase
0.99 1.00 ICGA, Late-Stage Leakage, Mild1.00 1.00 FA, Hypofluorescence Primarily During Venous Phase
0.98 1.00 ICGA, Late-Stage Decreasing Fluorescence Intensity0.99 0.99 FA, Blurred Optic Disc Margins in Venous Phase

1.00 1.00 ICGA, Late-Stage "Washout" Phenomenon1.00 1.00 FA, Increasing Fluorescence Intensity During the Venous 
Phase

1.00 1.00 ICGA, Late-Stage Staining1.00 1.00 FA, Clustered Hyperfluorescence During Venous Phase

1.00 1.00 ICGA, Inferior Retinal Elevation0.99 0.99 FA, Clustered Hypofluorescence During Venous Phase

0.99 0.99 ICGA, Obscured Hypofluorescence1.00 1.00 FA, Inferior Retinal Elevation During Venous Phase
1.00 1.00 ICGA, Staining1.00 1.00 FA, Venous Phase Leakage
1.00 1.00 ICGA, Early-Stage Patchy (“Stippled”) Hypofluorescence0.99 0.99 FA, Obscured Venous-Phase Hypofluorescence

1.00 1.00 ICGA, Early-Stage Rich Vascular Network1.00 1.00 FA, Early Pinpoint Hyperfluorescence in Venous Phase

0.99 1.00 ICGA, Early-Stage Pinpoint Hyperfluorescence1.00 1.00 FA, Diffuse Hyperfluorescence in Early Venous Phase
0.97 1.00 ICGA, Early-Stage Hyperfluorescence Predominates1.00 1.00 FA, Hyperfluorescence Primarily During Early Venous Phase

0.96 1.00 ICGA, Early-Stage Hypofluorescence Predominates1.00 1.00 FA, Clustered Hyperfluorescence in Early Venous Phase

1.00 1.00 ICGA, Early-Stage Clustered Hyperfluorescence1.00 1.00 FA, Clustered Hypofluorescence in Early Venous Phase

0.85 0.87 US, Abnormal Blood Flow in Lesion Using Doppler1.00 0.99 FA, Blurred Optic Disc Margins
0.84 0.89 US, Clear and Regular Lesion Borders0.99 0.98 FA, Gradually Increasing Fluorescence Intensity Over Time
0.99 1.00 US, Irregular Lesion Borders1.00 1.00 FA, Clustered Hyperfluorescence
0.90 0.93 US, Band-shaped Echo Visualized on Lesion Surface1.00 1.00 FA, Constant Late-Stage Fluorescence

0.86 0.93 US, Rapid Filling and Rapid Emptying of Contrast Agent to and 
from the Lesion1.00 1.00 FA, Late-Stage Diffuse Hyperfluorescence

0.96 0.97 US, Rapid Filling and Slow Empying of Contrast Agent to and from 
the Lesion1.00 1.00 FA, Primarily Late-Stage Hyperfluorescence

0.96 0.96 US, Vitreous Opacity0.99 1.00 FA, Late-Stage Leakage, Mild
0.82 0.92 US, Intravitreal Band Connected to Primary Lesion1.00 1.00 FA, Late-Stage Hypofluorescence Predominates

0.94 0.96 US, Point- or Band- shaped Hypoechoic Intravitreal Lesion(s) 
Connected to the Retina1.00 1.00 FA, Late-Stage Decreasing Fluorescence Intensity

0.84 0.93 US, Point- or Band- shaped Hypoechoic Intravitreal Lesion(s) Not 
Connected to the Retina1.00 1.00 FA, Late-Stage Increasing Fluorescence Intensity

0.94 0.94 US, Solid Lesion with Irregular Borders0.94 0.99 FA, Late-Stage Leakage

0.98 0.98 US, Negative Imaging Findings with Movement on Dynamic 
Imaging1.00 1.00 FA, Late-Stage Staining

0.99 0.99 US, Positive Posterior Scleral Concavity0.99 0.98 FA, Inferior Retinal Elevation
0.97 0.96 US, Fluttering with Movement on Dynamic Imaging0.98 0.99 FA, Leakage
0.84 0.90 US, Secondary Retinal Detachment0.99 0.99 FA, Staining
0.79 0.90 US, Hemispherical Solid Lesions0.99 0.99 FA, Early-Stage Hyperfluorescence Predominates
0.99 0.98 US, Flat and Raised Solid Lesions0.94 0.98 FA, Early-Stage Hypofluorescence Predominates
0.97 0.98 US, Abnormal Choroidal Concavity
0.93 0.93 US, Predominantly Internally Isoechoic Imaging Findings Present

0.97 0.96 US, Internally Isoechoic and Hypoechoic Imaging Findings Present

0.97 0.95 US, Internally Isoechoic and Hyperechoic Imaging Findings 
Present

0.83 0.91 US, Predominantly Hypoechoic Imaging Findings Present
0.93 0.96 US, Isoechoic and Hypoechoic Imaging Findings Present
0.99 0.98 US, Irregular, Solid, Nodular Lesions Near the Optic Disc
0.89 0.90 US, Ultrasonographic Hollowing

0.89 0.95 US, No Ultrasonographic Hollowing or Abnormal Findings in the 
Posterior Fossa Choroid Plexus
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