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Models are getting performant but less interpretable.

Computation used to train notable Al systems, by affiliation of
researchers

Computation is measured in total petaFLOP, which is 10*° floating-point operations estimated from Al literature, albeit with
some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models

like GPT-4.
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[ Solution-1: Post-hoc Explanation }

* Explain the black box model with another black box model.

* Explanations are often not faithful and can be misleading.

Test Image

Attention Maps

Explanations Using

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions
and use interpretable models instead. Nature Machine Intelligence. 2019.
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* Explain the black box model with another black box model.

* Explanations are often not faithful and can be misleading.
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[ Solution-2: Inherently Interpretable Methods ]

Provide their own explanations that are faithful to the predictions.

Table 3 | Scoring system for risk of recidivism

1. Prior arrests > 2 1 point
2. Prior arrests > 5 1 point -~
3. Prior arrests for local ordinance 1 point +---
4. Age at release between 18 to 24 1 point +--
5. Age at release > 40 —1 point 4o
Score =
Score —1 0 1 2 3 4
Risk (%) 11.9 26.9 50.0 731 88.1 95.3

This system is from ref. #, which was developed from refs. °“, The model was not created by a
human; the selection of numbers and features come from the RiskSLIM machine learning algorithm.

Rudin and Ustun. Optimized Scoring Systems: Toward Trust in Machine
Learning for Healthcare and Criminal Justice. INFORMS. 2018
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[ Concept Bottleneck Models (CBMs) J

local explanations
1mage-concept :
Input Image x global explanations
, / class-concept

__Human Designed Concepts
~ (©)! has nape color :: grey : /
A O ‘has bill shape :: cone i, 5
©)! has head pattern :: eyebow

Challenges:

* Scale: requires human efforts in building concept bottlenecks.

* Performance: perform worse than black-box models.

Koh et al. Concept Bottleneck Models. PMLR. 2020.



[ Concept Bottleneck Models (CBMs) ]
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Brown et al. Language models are few-shot learners. NeurIPS. 2020.
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Select the knowledge

The black-throated sparrow is a small bird
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sparrow 1s found in North America. It is a
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Ground Concepts using CLIP
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Ground Concepts using CLIP
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Prompt LLM to generate candidate concepts

class 1-axolotl

class 2-red panda

class N-tree frog

“:
N classes

[1] Raffel et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR. 2020. 14
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Prompt LLM to generate candidate concepts

prompt: describe what the axolotl looks like:

LLM: The axolotl's limbs are delicate, and the tail is long and thin.

Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin

A
clas 1-axolotl

class 2-red panda
S

LILLM — candidates

class N-tree frog

AYY

LLM —» candidates —

N classes Generate concepts: Sec 3.4

General Prompt Template

1. describe what the [CLASS NAME] looks like:
2. describe the appearance of the [CLASS NAME]:
3. describe the color of the [CLASS NAME]:

4. describe the pattern of the [CLASS NAME]:

5. describe the shape of the [CLASS NAME]:

Obtain 500 sentences for each class.

Extract concepts from sentences using TS5 [1].

String match to 1dentify and remove class name
tokens 1n each concept.

[1] Raffel et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR. 2020. 14



Submodular Concept Selection
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prompt: describe what the axolotl looks like:
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k t Ci2  tailis 1 d thi
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optimization : :
cix  gills are bright pink
S> F Coll thick, soft fur
LLM —» candidates submodular k concepts €22 reddlsh.brown fur
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optimization : :
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Submodular Concept Selection

* (Given a superset of concepts Sy fora class y.

 Select a subset C'y for the bottleneck which are discriminative and diverse.
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Submodular Concept Selection
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Compute Concept Scores

prompt: describe what the axolotl looks like:

LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:

Candidate concepts: limbs are delicate; tail is long and thin
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4

Bottleneck-C (N¢ concepts)
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Compute Concept Scores

Ncxd test image
prompt: describe what the axolotl looks like: Concept Space E¢ € R™¢ ..5:
LLM: The axolotl's limbs are delicate, and the tail is long and thin. T "*1. :
Extract concept using LM and delete class names: o '
Candidate concepts: limbs are delicate; tail is long and thin text encoder "
A A | p
class 1-axolotl P - v
\Y; T €11 limbs are delicate image encoder
k t €12  tailis 1 d thi
e candidates sul?mpdu}ar concepts ! ail is o?g and thin i
optimization : :
cix  gills are bright pink x € R4
S, F Ca1 thick, soft fur concept scores: g(x,C) = x- E CT € RNe
k t i - m e 1,N
LLM AT sut?mf)du_lar K concep S» c.z.z reddlsh.brown fur | | | | - | ‘ | (1, N¢)
optimization :
C2k ears are also red
Sy F Cn,1 toes are long
. t
LLM i sul?mpdu}ar k concepts C{v,z green body
optimization : :
¢nk  smooth bumpy skin

N Y
N classes Generate concepts: Sec 3.4 Select concepts: Sec 3.2  Bottleneck-C (N¢ concepts)

17



Compute Concept Scores

prompt: describe what the axolotl looks like:

LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:

Candidate concepts: limbs are delicate; tail is long and thin

A
class 1-axolotl
S J
k concepts
—» LLM — candidates —» Sut?mf)du.lar (SR EE e
optimization
S> F
k t
LLM — candidates sul?mf)du_l - S>
optimization
S~ T
submodular k concepts

—» candidates —» . . .
LLM 16ates optimization

N classes

Generate concepts: Sec 3.4 Select concepts: Sec 3.2

Concept Space E; € RNcxd

T et
'-‘
i

test image

text encoder

A
e N
€11 limbs are delicate image encoder
€12  tail is long and thin i
cix  gills are bright pink x € R4
2.1 thick, soft fur concept scores: g(x,C) = x- E CT € RNe
¢z reddishbrownfur | [ - | |- | (1, N¢)
¢2r  ears are also red W € RV*Nc
Class-Concept dot product
Weight Matrix
CN,1 toes are long
CN,2 green body (1,N)
cvk  smooth bumpy skin $ = argmax(g(x,C) - c(W)T)

N\ 4
Bottleneck-C (N¢ concepts) Predict the label with concepts: Sec 3.3
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Concept scores and label prediction

image encoder
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Concept scores and label prediction

. g

5 =
= I

- Xy

—>x € R4

image encoder
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Concept scores and label prediction

concept scores: g(x,C) = x-E;' € RNe
_ - ‘ (1,N,)

—>x € R4

image encoder

63



Concept scores and label prediction

—>x € R4

image encoder

concept scores: g(x,C) = x-E;' € RNe

(1, N¢)

W = RNXNC

Class-Concept
Weight Matrix

9 dot product

softmax

(1,N)
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Concept scores and label prediction

concept scores: g(x,C) = x-E;' € RNe

(1, N C )
T
% NXN,
= WeR
= d
o —»x ER Class-Concept o dot product
Sh Weight Matrix [Softmax
<
=
- (1,N)

y = argmax(g(x,C) - c(W)1)
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Experimental Setup

* Baselines:
* Linear Probe: logistic regression on the image features.
 PCBM: Post-hoc CBM (Yuksekgonul et al., 2022)
* Ensemble CBM prediction with end-to-end prediction.
* ComDL: Compositional Derivation Learning (Yun et al., 2022)
 Human designed concepts.
* Linear layer over CLIP similarity scores.
* Few-shot/Fully-supervised.

* Metric: accuracy.
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Comparison to Black-box Model

Accuracy (%)
AN I o0 O
< <

N
-

Average

S

S

- [inear Probe
—e— LaBo (Ours)

2 4 8 16 full
# of shots

# of training 1mages per class
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Comparison to Blackbox Model
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90 ¥ 100
S S 50 e R S 90- ,
> > 70 — -
é 70 § 60 § 801 /’x S
§ 60 -~ Linear Probe § 50 - Linear Probe § 70+ -~ Linear Probe § 50- X -~ Linear Probe
< —+— LaBo (Ours) < —— LaBo (Ours) < —+— LaBo (Ours) < —+— LaBo (Ours)
5007 — 711} e — 601 | [ [ me—
1 2 4 8 16  full | 2 4 8 16 full 1 2 4 8 16  full 1 2 4 8 16  full
# of shots # of shots # of shots # of shots
Food-101 70 Aircraft Flower-102 CUB
o 100 m— — —— .
£ geo S = g0
g 801 = &50] ) % 2701
§ 707 g --»-- ] inear Probe § 401 - [inear Probe gi i ---»--- Linear Probe § 601 - Linear Probe
< 601 + —e— LaBo (Ours) < 307 « —&— LaBo (Ours) < 85 —— LaBo (Ours) < 501 1 —— LaBo (Ours)
i 2 4 § 16 fn 1T 2 4 3 16 ml T3 24§ 16 fl 1 2 4 8 16 full
# of shots # of shots # of shots # of shots
UCF-101 DTD HAM10000 RESISC45
90 R0 < _ 80] / Lo
S S S S =
>80 > 701 < 60 = 90 1 ey
Q Q Q Q
s P £ 601 S | S e e s 801
g 70 ’ - Linear Probe é 50 X --»-- Linear Probe é 401 o Linear Probe § ' - Linear Probe
< 601 * —e— LaBo (Ours) < 10! > —<+— LaBo (Ours) < 20 —— LaBo (Ours) < 707 —+— LaBo (Ours)
I 2 4 % 16 ful i 2 4 & 16 ful L2 4 8 16 mn 0 3 4 8 16 f
# of shots # of shots # of shots # of shots

Figure 3. Test accuracy (%) comparison between LaBo and Linear Probe on 11 datasets. The x-axis represents the number of labeled images.
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Compare with Previous CBM

Method w/ end-to-end CIFAR-10 CIFAR-100

PCBM [ 7] X 84.5 56.0
LaBo (Ours) X 87.9 69.1
PCBM-h [7] v 87.6 69.9
Linear Probe v 88.8 70.1

Table 2. Test accuracy comparison between LaBo and Post-hoc

Concept Bottleneck Model (PCBM) on CIFAR-10 and CIFAR-100.

“w/ end-to-end” denotes whether the model employs an end-to-end
residual predictor from image features to targets.

Method w/ manual concepts 1 S Full

CompDL [07] v 13.6 33.2 526
LaBo (Ours) X 35,1 55.7 718
Linear Probe - 284 554 755

Table 3. LaBo and CompDL evaluated on CUB for 1/5/full shots.
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Compare with Previous CBM

Method w/ end-to-end CIFAR-10 CIFAR-100

PCBM [ (] X 84.5 56.0
LaBo (Ours) X 87.9 69.1
PCBM-h [(] / 87.6 69.9
Linear Probe v 88.8 70.1
LaBo doesn’t rely on black box predictors. 88
{  LaBo doesn’t require human annotations. d

residual predictor from image features to targets.

Method w/ manual concepts 1 S Full

CompDL [07] v 13.6 33.2 526
LaBo (Ours) X 35,1 55.7 718
Linear Probe - 284 554 755

Table 3. LaBo and CompDL evaluated on CUB for 1/5/full shots.
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Qualitative Results

ImageNet

v
]
—
.=

=

=
=

Class Name

badger

—

Top-3 Concepts Class Name
1.short legs and long
body make it an ex-
cellent digger

2. black-and-white
striped fur

3. coat is very shaggy

1. garnished with
green onions, nori,
and other toppings

2. most grocery stores
3. various toppings

horned lark

1. black and white
plumage that is strik-
ing in the sunlight

2. black body with a
long, slender neck
3.red and black bill

Top-3 Concepts

1. black and red
stinger

2. small, black insect
with six legs

3.long, slender anten-
nae that it uses to
smell and touch

1. chickpeas, tahini,
olive oil, garlic,
lemon juice

2. made from cooked,
mashed chickpeas

3. roasted red peppers

1. black line running
through yellow face
2. head is black with a
white horn on each
side

3. black horn on each
side of their head
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Qualitative Results

UCF-101

1. grip bow tightly in
their left hand

2. focused and con-
centrated on their task
3. keep bow and ar-
rows in safe and dry
place when not in use

drumming
o

>

74 I =
, .
L=

~= 9

-

1. blur as they fly
over the drums

2. sitting on a stool in
front of a drum set

3. position the drum-
stick so it is resting
on your index finger

dermatofibro

.

HAM100000

1. generally not
painful

2. red, brown, or pur-
ple in color

3. thin white halo
around them

‘melanoma

1. dark brown or
black in color

2. large and dark
3. flesh-colored,
brown, or black

=
@
!
7
=

1. waves crashing
onto the shore

2. few rocks poking
out

3. waves are gentle

1. connected by steel
rails

2. tramline that is 3
feet wide and runs
along the length of the
court

3. faint, twinkling line

25



Conclusion

Leverage the knowledge of LLLM to build
interpretable models (CBMs).

With vision-language models (VLMs) and
concept selection, interpretable models can

achieve competitive performance as Black-box.
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What makes the critical domain
more challenging?

27



[ The distribution of demographic variables in medical data can be skewed. }

Distribution of race in CheXpert [1]. Distribution of skin colors in ISIC [2, 3].

2450001 25000- 70.59%

30000 1
" 20000-
E 25000 1
5 - =F
% 20000 € e 2
o é’ DE
-g 15000 1 10000+ l :
= M s

10000 1
5000-

9.02% 9.79%
5000 - 6.029
2790 1800
' ' ' [ 1 — 07
White Asian Black Hispanic Pacific Islander 1 2 3 4 5 6
Fitzpatrick Skin Type

[1] Irvin & Rajpurkar et al. AAAI 2019; [2] Codella et al. ISBI. 2018; [3] Bevan et al., DART. 2022. 28



[ The distribution of « MIT News

| can be skewed. }

ON CAMPUS AND AROUND THE WORLD < SUBSCRIBE

35000

30000

Number of Patients
S
3
o
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25000

15000 1

Distribution of race 1 Artificial intelligence predicts patients’ race from  colors in ISIC [2, 3].
their medical images

Study shows Al can identify self-reported race from medical images that
contain no indications of race detectable by human experts.

Rachel Gordon | MIT CSAIL
May 20, 2022
1
2
3
4
5
I
9.79%
1.809
White Asian 5 6

to demographic variables.
Gichoya et al. Lancet. 2022. Lancet.

[1] Irvin & Rajpurkar et al. AAAI 2019; [2] Codella et al. ISBI. 2018; [3] Bevan et al., DART. 2022. 28
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Deep models have good priors for the general domain.
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Deep models have good priors for the general domain. ]

Untrained

ViT

| EESOEERERE

Linear Layer /

Accuracy (%)

N

N
-

(\®)
-

Natural Images

30.7

20.5

16.0

6.4

0 Random Pixel CNN ViT

Datasets used: CIFAR-10, STL-10, ImageNet,
Flower-101, Food-101
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70

35

27.8

53.2

47.6

50.6

Random Pixel

CNN

ViT

X-ray Datasets: Pneumonia, COVID-QU, NIH-

CXR, Open-I, VinDr-CXR.

SKkin Lesion Images
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61.6 558 61.5

50
37.9

25

0 Random Pixel CNN ViT

Skin Lesion Datasets: HAM10000, BCN20000,
PAD-UFS-20, Melanoma, UWaterloo. 30
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[ Deep models don’t have good priors for the medical domain. ]
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[ Deep models don’t have good priors for the medical domain. ]

X-rays

SKkin Lesion Images
70 75
ca A 61.6 61.5
;I We need more priors in the model. P
[ 37.9
35| 27.8
25

0 Random Pixel CNN _ WAT 0 Random Pixel CNN VAT

X-ray Datasets: Pneumonia, COVID-QU, NIH- Skin Lesion Datasets: HAM 10000, BCN20000,
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KnoBo: Knowledge-enhanced Concept
Bottlenecks for Interpretable and Robust
Medical Image Classification

Yue Yang, Mona Gandhi, Yufe1 Wang, Yifan Wu, Michael S. Yao,
James C. Gee, Mark Yatskar
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Where to acquire the prior knowledge?

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.
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Where to acquire the prior knowledge?

[ Query: How to diagnose COVID from X-rays? ]

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.
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Where to acquire the prior knowledge?

[ Query: How to diagnose COVID from X-rays? ]

Medical Corpus

PubL@ed ) %I g

wa' STATPEARLS Wilj;g’E.DIA TEXTBOOKS

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.
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Where to acquire the prior knowledge?

[ Query: How to diagnose COVID from X-rays? ]

BE

TEXTBOOKS

Medical Corpus

Pu bLWed 5M Articles, 300M+ paragraphs

wa STATPEARLS  9.3K Articles, 301.2K paragraphs

6.5M Articles, “ !F ! @ E 18 Medical Textbooks,
30.4M paragraphs = == 125.8k paragraphs

WIKIPEDIA TEXTBOOKS

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.
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Where to acquire the prior knowledge?

[ Query: How to diagnose COVID from X-rays? ]

AN

retrieve relevant documents

Medical Corpus

PublfQed =) [E[S

D0

W STATPEARLS Wik

PEDIA TEXTBOOKS

Pu bLWed 5M Articles, 300M+ paragraphs

wa STATPEARLS  9.3K Articles, 301.2K paragraphs

6.5M Articles, “ !F ! @ E 18 Medical Textbooks,
30.4M paragraphs = == 125.8k paragraphs

WIKIPEDIA TEXTBOOKS

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.
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Where to acquire the prior knowledge?

[ Query: How to diagnose COVID from X-rays? ]

AN

retrieve relevant documents

e N\
|

Medical Corpus '

Influenza A HIN1 respiratory infection:

7o ‘ * @ | The most frequent radiological
P U b ed Z — = ' . patterns found were ground-glass opacities
& - and peribronchovascular markings.

W STATPEARLS ~ WikieepiA  Texrsooxs | p

Pu bLWed 5M Articles, 300M+ paragraphs

wa STATPEARLS  9.3K Articles, 301.2K paragraphs

4 6.5M Articles, “ @ F ! @ E 18 Medical Textbooks,
97 30.4M paragraphs =] == 125.8k paragraphs

WIKIPEDIA TEXTBOOKS

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.
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Where to acquire the prior knowledge?

[ Query: How to diagnose COVID from X-rays? ] Is there ground-glass opacity?

. h )
retrieve relevant documents ) retrieval augmented
N concept generation

~N Al

Medical Corpus '

Influenza A HIN1 respiratory infection:

-f W The most frequent radiological
P u b ed Z 1 ” patterns found were ground-glass opacities
and peribronchovascular markings.

wa' STATPEARLS WIKIPEDIA TEXTBOOKS 4| p

Pu bLWed 5M Articles, 300M+ paragraphs

wa STATPEARLS  9.3K Articles, 301.2K paragraphs

WIKIPEDIA TEXTBOOKS

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.

6.5M Articles, “ !F ! @ E 18 Medical Textbooks,
30.4M paragraphs = == 125.8k paragraphs
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Where to acquire the prior knowledge?

[ Query: How to diagnose COVID from X-rays? ] Is there ground-glass opacity?

’ °c9) retrieval augmented
concept generation

retrieve relevant documents

~N Al

Medical Corpus '

Influenza A HIN1 respiratory infection:

-f W The most frequent radiological
P u b ed Z 1 ” patterns found were ground-glass opacities
and peribronchovascular markings.

wa' STATPEARLS WIKIPEDIA TEXTBOOKS 4| p

Pu bLWed 5M Articles, 300M+ paragraphs

wa STATPEARLS  9.3K Articles, 301.2K paragraphs

WIKIPEDIA TEXTBOOKS

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.

6.5M Articles, “ !F ! @ E 18 Medical Textbooks,
30.4M paragraphs = == 125.8k paragraphs
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How to ground the knowledge?

Is there ground-glass opacity? )

Chung et al. Scaling instruction-finetuned language models. IMLR. 2024.
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How to ground the knowledge?

Is there ground-glass opacity? P

Paired Clinical Reports

Redemonstration of subtle posterior
lung base densities corresponding to
ground-glass opacities on prior CT
and likely representing aspiration do
not appear worsened. Tiny bilateral
pleural effusions. v

Chung et al. Scaling instruction-finetuned language models. IMLR. 2024.
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How to ground the knowledge?

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior
lung base densities corresponding to
ground-glass opacities on prior CT
and likely representing aspiration do

\.

not appear worsened. Tiny bilateral
pleural effusions. v
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How to ground the knowledge?

Learn a binary classifier for
Is there ground-glass opacity? each concept.
Is there ground-glass opacity?

Paired Clinical Reports
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lung base dens1tles.<fonesponQ1ng to ) Yes
ground-glass opacities on prior CT
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pleural effusions. v
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How to ground the knowledge?

Learn a binary classifier for
Is there ground-glass opacity? each concept.

Is there ground-glass opacity?

u Clinical Report I)
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How to ground the knowledge?

Learn a binary classifier for
Is there ground-glass opacity? each concept.

Is there ground-glass opacity?

L 2
u Clinical Report ) !
Yes :LI
u positive H negatlve
report report

, l
Paired Clinical Reports

Redemonstration of subtle posterior \ !

lung base densities corresponding to ©_0 Y positive nega‘[ive
ground-glass opacities on prior CT CS images images
and likely representing aspiration do
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pleural effusions. v
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How to ground the knowledge?

Learn a binary classifier for
Is there ground-glass opacity? each concept.

Is there ground-glass opacity?

= °=
u Clinical Report ) !

Yes :LI
u positive negatlve
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Experimental Setup

* Baselines (same vision backbone):
* Linear Probe: logistic regression on the image features.
* End-to-end: Unfreeze the visual encoder and update all parameters.
* LaBo: knowledge priors from LLM, no knowledge grounding.
* Metric:
* Confounded datasets: ID (validation), OOD (test), delta | (JOOD-ID|),
and domain-average accuracy (ID + OOD / 2).
* Standard datasets: test accuracy.

* Overall Performance: average over confounded and standard datasets.
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Results on X-ray Datasets

Domain

Method ID (010))/ delta| Average Standard Overall
Linear Probe 95.2 30.7 64.5 62.9 73.8 68.4
End-to-End 96.7 17.0 79.7 56.8 70.2 63.5
LaBo 93.5 34.8 58.7 64.2 72.1 68.1
KnoBo 89.7 58.8 30.9 74.3 3.1 73.7

The best score 1s bold and the second best is underlined.
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Results on Skin Lesion Datasets

Method 1D

Linear Probe 91.9

End-to-End 95.6

LaBo 89.9

KnoBo 86.0

010])

514

70.5

delta|

39.8

Domain
Average

72.0

71.6
70.6

78.3

Standard Overall

2.8

84.3

80.0

78.1

77.4
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Results on Skin Lesion Datasets

Method ID OOD delta] Egg:;‘; Standard Overall
Linear Probe  91.9 52.1 39.8 72.0 82.8 77.4
End-to-End  95.6  47.6 48.0 71.6 84.3 77.9
LaBo 89.9  51.4 38.4 70.6 80.0 75.3
KnoBo 86.0  70.5 14.1 78.3 78.1 78.2

KnoBo is more robust on confounded datasets.
KnoBo is competitive on standard datasets.

39




Comparison on Knowledge Types

X-ray Datasets

Skin Lesion Datasets

Knowledge
Confounded Standard  Overall | Confounded Standard  Overall
Prompt 72.9 72.8 72.9 79.3 72.8 76.0
Textbooks 72.0 72.9 72.4 79.2 76.4 77.8
Wikipedia 72.8 72.7 72.8 79.3 76.2 77.8
StatPearls 734 72.0 72.7 79.2 77.6 78.4
PubMed 74.3 73.1 73.7 79.3 76.7 78.0
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Conclusion

,\(? | Interpretable models with knowledge priors |

u are more robust in medical domains.

Future Work

Better feature representations for critical domains.

Different structures of knowledge.

Other usages of interpretable models.
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Thank you!
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