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Poor generalization.
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Catastrophic failures in critical domains.

Select shortcuts.
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• Explain the black box model with another black box model.

• Explanations are often not faithful and can be misleading.

Solution-1: Post-hoc Explanation 

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions 
and use interpretable models instead. Nature Machine Intelligence. 2019. 
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Provide their own explanations that are faithful to the predictions.

Rudin and Ustun. Optimized Scoring Systems: Toward Trust in Machine 
Learning for Healthcare and Criminal Justice. INFORMS. 2018

Solution-2: Inherently Interpretable Methods
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Concept Bottleneck Models (CBMs)

Koh et al. Concept Bottleneck Models. PMLR. 2020.

Input Image x

End-to-end Model label y (black-throated sparrow)
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Concept Bottleneck Models (CBMs)
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Challenges:
• Scale: requires human efforts in building concept bottlenecks.

• Performance: perform worse than black-box models.
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Concept Bottleneck Models (CBMs)

Koh et al. Concept Bottleneck Models. PMLR. 2020.

Input Image x

Challenges:
• Scale: requires human efforts in building concept bottlenecks.

• Performance: perform worse than black-box models.

global explanations
class-concept

local explanations
image-conceptDARPA XAI BAA, 2019.
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Agenda of this talk

How to construct concept bottlenecks 
without human effort?

How to make interpretable models 
performant as black-box models?

What other advantages can interpretable 
models give us? Answer: Robustness.

LaBo (CVPR 23)

KnoBo 
(In progress)



Language in a Bottle:
Language Model Guided Concept Bottlenecks

for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, 
Chris Callison-Burch, Mark Yatskar
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University of Pennsylvania
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Leverage the world knowledge of LLMs

Brown et al. Language models are few-shot learners. NeurIPS. 2020.
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Ground Concepts using CLIP

black head and throat 

long, thin tail

wings are brown 
with white stripes

Radford et al. Learning Transferable Visual Models From Natural Language Supervision. PMLR. 2021.
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Prompt LLM to generate candidate concepts

• Obtain 500 sentences for each class.

• Extract concepts from sentences using T5 [1].

• String match to identify and remove class name 
tokens in each concept.

[1] Raffel et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR. 2020.
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Concept scores and label prediction
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Generate concepts: Sec 3.4 

prompt: describe what the axolotl looks like: 
LLM: The axolotl's limbs are delicate, and the tail is long and thin. 
Extract concept using LM and delete class names: 
Candidate concepts: limbs are delicate; tail is long and thin 

Select concepts: Sec 3.2 
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image encoder 
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Predict the label with concepts: Sec 3.3 Bottleneck-C (NC concepts) N classes 

Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Concept scores and label prediction
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image encoder 
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Predict the label with concepts: Sec 3.3 Bottleneck-C (NC concepts) N classes 

Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Predict the label with concepts: Sec 3.3 Bottleneck-C (NC concepts) N classes 

Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Predict the label with concepts: Sec 3.3 Bottleneck-C (NC concepts) N classes 

Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Extract concept using LM and delete class names: 
Candidate concepts: limbs are delicate; tail is long and thin 

Select concepts: Sec 3.2 

c1,1 
c1,2 

c1,k 

... 

k concepts 
limbs are delicate 

tail is long and thin 

gills are bright pink 

... 

c2,1 
c2,2 

c2,k 

... 

k concepts 
think, soft fur 

reddish brown fur 

ears are also red 

... 

k concepts 
cN,1 
cN,2 

cN,k 

... 

toes are long 
green body 

smooth bumpy skin 

... 

... ... ... 

... ... 

... ... 

... ... 

... ... 

text encoder 

Concept Space #! ∈ ℝ"!×$ 

concept scores: &((, *) = 	( ⋅ #!% ∈ ℝ"" 
 (1, 0!) 

 

Class-Concept 
Weight Matrix 

W ∈ ℝ"×""  

image encoder 

x ∈ ℝ$ 

test image 

12 = argmax(&((, *) ⋅ !(8)T) 
(1, 0) 

 

Predict the label with concepts: Sec 3.3 Bottleneck-C (NC concepts) N classes 

Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Predict the label with concepts: Sec 3.3 Bottleneck-C (NC concepts) N classes 

Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Predict the label with concepts: Sec 3.3 Bottleneck-C (NC concepts) N classes 

Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Figure 2. We present an overview of our Language-Model-Guided Concept Bottleneck Model (LaBo), which is an interpretable by design
image classification system. First, we prompt the large language model (GPT-3) to generate candidate concepts (Sec 3.4). Second, we
employ a submodular function to select concepts from all candidates to construct the bottleneck (Sec 3.2). Third, we apply a pretrained
alignment model (CLIP) to obtain the embeddings of concepts and images, which is used to compute concept scores. Finally, we train a
linear function in which the weight W denotes the concept-class association user to predict targets based on concept scores (Sec 3.3).

Figure 1, GPT-3 is prompted about sparrows and completes
with information such as “brown head with white stripes.”
LaBo leverages this by constructing bottlenecks where the
concepts are such GPT-3 generated sentences. Since our
concepts are sentences, we use CLIP to score their presence
in an image and form a bottleneck layer out of these scores.

A key advantage of LaBo is the ability to control the
selection of concepts in the bottleneck by generating can-
didates from the language model. We develop selection
principles targeting both interpretability and classification
accuracy. For example, we prefer smaller bottlenecks that
include shorter sentences that do not include class names.
Furthermore, to maximize performance, we prefer attributes
that CLIP can easily recognize and are highly discriminative.
To account for appearance variation, we select attributes that
cover a variety of information and are not repetitive. We
formulate these factors into a novel sub-modular criterion
that allows us to select good bottlenecks efficiently [36].

We have evaluated LaBo-created bottlenecks on 11 di-
verse image classification tasks, spanning recognition of
common objects [10, 25] to skin tumors [60]. fine-grained
types [3, 31, 37, 63], textures [9], actions [55], skin tu-
mors [60], and satellite photographed objects [7].1 Our
main finding is that LaBo is a highly effective prior for what

1The only dataset specialization we perform is prompt tuning for GPT-
3 when creating candidate attributes. This is largely done to overcome
problems of word sense. For example, when naively prompted to produce
knowledge about the flower “bird of paradise” GPT-3 yields information
about birds instead of flowers. In general, specialization here was also
minimal. See appendix for prompts.

concepts to look for, especially in low data regimes. In eval-
uations comparing with linear probes, LaBo outperforms by
as much as 11.7% at 1-shot and marginally underperforms
given larger data settings. Averaged over many dataset sizes,
LaBo bottlenecks are 1.5% more accurate than linear probes.
In comparison to modifications of CBMs that improve per-
formance by circumventing the bottleneck [66], we achieve
similar or better results without breaking the CBM abstrac-
tion. In extensive ablations, we study key trade-offs in bot-
tleneck design and show our selection criteria are crucial,
and highlight several other critical design choices.

Human evaluations indicate that our bottlenecks are
largely understandable, visual, and factual. Finally, anno-
tators find our GPT-3 sourced bottlenecks are more factual
and groundable than those constructed from WordNet or
Wikipedia sentences. Overall, our experiments demonstrate
that automatically designed CBMs can be as effective as
black box models while maintaining critical factors con-
tributing to their interpretability.

2. Related Work
Broadly, interpretability methods fall into two categories:

post-hoc and by design. While ours is an instance of the latter,
post-hoc methods have the advantage of not imposing any
model constraints. For example, Gradient-weighted Class
Activation Mapping approaches [2, 18, 34, 51] trace network
gradients to identify the input areas that guide predictions.
Similarly, Explanation Generation methods [16, 22, 38, 53]
require models to produce explanations for visual tasks by
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Datasets
Common Objects
ImageNet1K CIFAR-10/CIFAR-100

Fine-grained Objects
Flower-102 Food-101 Aircraft CUB

Action
UCF-101

Textures
DTD

Skin Tumors
HAM10000

Satellite
RESISC45
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Experimental Setup
• Baselines:

• Linear Probe: logistic regression on the image features.

• PCBM: Post-hoc CBM (Yuksekgonul et al., 2022)

• Ensemble CBM prediction with end-to-end prediction.

• ComDL: Compositional Derivation Learning (Yun et al., 2022)

• Human designed concepts.

• Linear layer over CLIP similarity scores.

• Few-shot/Fully-supervised.

• Metric: accuracy.
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Comparison to Black-box Model

# of training images per class
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Comparison to Blackbox Model
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Comparison to Blackbox Model

LaBo outperforms the black-box model in few-shot.
LaBo achieves competitive performance with more data.
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Compare with Previous CBM
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Compare with Previous CBM

LaBo doesn’t rely on black box predictors.
LaBo doesn’t require human annotations.
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Qualitative Results
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Qualitative Results
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Conclusion

Leverage the knowledge of LLM to build 
interpretable models (CBMs).

With vision-language models (VLMs) and 
concept selection, interpretable models can 

achieve competitive performance as Black-box.
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What makes the critical domain 
more challenging?
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The distribution of demographic variables in medical data can be skewed.

Distribution of skin colors in ISIC [2, 3]. 

[1] Irvin & Rajpurkar et al. AAAI. 2019; [2] Codella et al. ISBI. 2018; [3] Bevan et al., DART. 2022.

Distribution of race in CheXpert [1]. 



28

The distribution of demographic variables in medical data can be skewed.

Distribution of skin colors in ISIC [2, 3]. 

[1] Irvin & Rajpurkar et al. AAAI. 2019; [2] Codella et al. ISBI. 2018; [3] Bevan et al., DART. 2022.

Distribution of race in CheXpert [1]. 

Deep models are very sensitive 
to demographic variables. 
Gichoya et al. Lancet. 2022. Lancet.



28

The distribution of demographic variables in medical data can be skewed.

Distribution of skin colors in ISIC [2, 3]. 

[1] Irvin & Rajpurkar et al. AAAI. 2019; [2] Codella et al. ISBI. 2018; [3] Bevan et al., DART. 2022.

Distribution of race in CheXpert [1]. 

Deep models are very sensitive 
to demographic variables. 
Gichoya et al. Lancet. 2022. Lancet.

We need more robust models!



28

The distribution of demographic variables in medical data can be skewed.

Distribution of skin colors in ISIC [2, 3]. 

[1] Irvin & Rajpurkar et al. AAAI. 2019; [2] Codella et al. ISBI. 2018; [3] Bevan et al., DART. 2022.

Distribution of race in CheXpert [1]. 

Deep models are very sensitive 
to demographic variables. 
Gichoya et al. Lancet. 2022. Lancet.

We need more robust models!



29
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Deep models have good priors for the general domain.

Pixel

ViT

CNN

Li
ne

ar
 L
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er

Untrained

Datasets used: CIFAR-10, STL-10, ImageNet,
Flower-101, Food-101



30



30
X-ray Datasets: Pneumonia, COVID-QU, NIH-
CXR, Open-I, VinDr-CXR.

Skin Lesion Datasets: HAM10000, BCN20000, 
PAD-UFS-20, Melanoma, UWaterloo.
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Deep models don’t have good priors for the medical domain.

X-ray Datasets: Pneumonia, COVID-QU, NIH-
CXR, Open-I, VinDr-CXR.

Skin Lesion Datasets: HAM10000, BCN20000, 
PAD-UFS-20, Melanoma, UWaterloo.
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Deep models don’t have good priors for the medical domain.

X-ray Datasets: Pneumonia, COVID-QU, NIH-
CXR, Open-I, VinDr-CXR.

Skin Lesion Datasets: HAM10000, BCN20000, 
PAD-UFS-20, Melanoma, UWaterloo.

We need more priors in the model.



KnoBo: Knowledge-enhanced Concept 
Bottlenecks for Interpretable and Robust

Medical Image Classification
Yue Yang, Mona Gandhi, Yufei Wang, Yifan Wu, Michael S. Yao, 

James C. Gee, Mark Yatskar
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Where to acquire the prior knowledge?

Xiong et al. Benchmarking Retrieval-Augmented Generation for Medicine. Arxiv. 2024.
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Is there ground-glass opacity?
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Datasets

Gender Race

Age Hospital

Skin Color Site

Confounded

Gender
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Datasets

Gender Race

Age Hospital

Skin Color Site

Confounded

X-ray: Pneumonia, COVID-
QU, NIH-CXR, Open-I, 
VinDr-CXR.

Skin Lesion: HAM10000, 
BCN20000, PAD-UFS-20, 
Melanoma, UWaterloo.

Standard
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Experimental Setup
• Baselines (same vision backbone):

• Linear Probe: logistic regression on the image features.

• End-to-end: Unfreeze the visual encoder and update all parameters.

• LaBo: knowledge priors from LLM, no knowledge grounding.

• Metric: 

• Confounded datasets: ID (validation), OOD (test), delta ↓ (|OOD-ID|), 

and domain-average accuracy (ID + OOD / 2).

• Standard datasets: test accuracy.

• Overall Performance: average over confounded and standard datasets.
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Results on X-ray Datasets

Method ID OOD delta↓ Domain 
Average Standard Overall

Linear Probe 95.2 30.7 64.5 62.9 73.8 68.4

End-to-End 96.7 17.0 79.7 56.8 70.2 63.5

LaBo 93.5 34.8 58.7 64.2 72.1 68.1

KnoBo 89.7 58.8 30.9 74.3 73.1 73.7

The best score is bold and the second best is underlined.
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Results on Skin Lesion Datasets

Method ID OOD delta↓ Domain 
Average Standard Overall

Linear Probe 91.9 52.1 39.8 72.0 82.8 77.4

End-to-End 95.6 47.6 48.0 71.6 84.3 77.9

LaBo 89.9 51.4 38.4 70.6 80.0 75.3

KnoBo 86.0 70.5 14.1 78.3 78.1 78.2
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Results on Skin Lesion Datasets

Method ID OOD delta↓ Domain 
Average Standard Overall

Linear Probe 91.9 52.1 39.8 72.0 82.8 77.4

End-to-End 95.6 47.6 48.0 71.6 84.3 77.9

LaBo 89.9 51.4 38.4 70.6 80.0 75.3

KnoBo 86.0 70.5 14.1 78.3 78.1 78.2

KnoBo is more robust on confounded datasets.
KnoBo is competitive on standard datasets.
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Comparison on Knowledge Types

Knowledge
X-ray Datasets Skin Lesion Datasets

Confounded Standard Overall Confounded Standard Overall

Prompt 72.9 72.8 72.9 79.3 72.8 76.0

Textbooks 72.0 72.9 72.4 79.2 76.4 77.8

Wikipedia 72.8 72.7 72.8 79.3 76.2 77.8

StatPearls 73.4 72.0 72.7 79.2 77.6 78.4

PubMed 74.3 73.1 73.7 79.3 76.7 78.0
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Conclusion

Interpretable models with knowledge priors 
are more robust in medical domains.

Future Work
• Better feature representations for critical domains.

• Different structures of knowledge.

• Other usages of interpretable models.
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Thank you!


