

Language Guided Concept Bottlenecks for Interpretable and Robust Image Classification

Yue Yang

WPE-II Presentation

Committee: Dan Roth (Chair), Chris Callison-Burch, Mark Yatskar

Models are getting performant but less interpretable.

Computation used to train notable AI systems, by affiliation of researchers

Computation is measured in total petaFLOP, which is 10¹⁵ floating-point operations estimated from AI literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.

Data source: Epoch (2023)

OurWorldInData.org/artificial-intelligence | CC BY

Our World in Data

Note: The Executive Order on AI refers to a directive issued by President Biden on October 30, 2023, aimed at establishing guidelines and standards for the responsible development and use of artificial intelligence within the United States.

Models are getting performant but less interpretable.

Computation used to train notable AI systems, by affiliation of researchers

Computation is measured in total petaFLOP, which is 10¹⁵ floating-point operations estimated from AI literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.

Data source: Epoch (2023)

OurWorldInData.org/artificial-intelligence | CC BY

Our World in Data

Note: The Executive Order on AI refers to a directive issued by President Biden on October 30, 2023, aimed at establishing guidelines and standards for the responsible development and use of artificial intelligence within the United States.

Models are getting performant but less interpretable.

Computation used to train notable AI systems, by affiliation of researchers

Computation is measured in total petaFLOP, which is 10¹⁵ floating-point operations estimated from AI literature, albeit with some uncertainty. Estimates are expected to be accurate within a factor of 2, or a factor of 5 for recent undisclosed models like GPT-4.

Data source: Epoch (2023)

OurWorldInData.org/artificial-intelligence | CC BY

Our World in Data

Note: The Executive Order on AI refers to a directive issued by President Biden on October 30, 2023, aimed at establishing guidelines and standards for the responsible development and use of artificial intelligence within the United States.

Catastrophic failures in critical domains.

Catastrophic failures in critical domains.

DeGrave et al. Nature Machine Intelligence. 2023 3

Catastrophic failures in critical domains.

DeGrave et al. Nature Machine Intelligence. 2023 3

4

4

4

Solution-1: Post-hoc Explanation

- Explain the black box model with another black box model.
- Explanations are often **not faithful** and can be misleading.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence. 2019.

Solution-1: Post-hoc Explanation

- Explain the black box model with another black box model.
- Explanations are often **not faithful** and can be misleading.

	Test Image	Evidence for Animal Being a Siberian Husky
Explanations Using Attention Maps		

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence. 2019.

Solution-1: Post-hoc Explanation

- Explain the black box model with another black box model.
- Explanations are often **not faithful** and can be misleading.

	Test Image	Evidence for Animal Being a Siberian Husky	Evidence for Animal Being a Transverse Flute	
Explanations Using Attention Maps				

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence. 2019.

Solution-2: Inherently Interpretable Methods

Provide their own explanations that are faithful to the predictions.

Table 3 Scoring system for risk of recidivism											
1.	Prior ar	rests ≥ 2	2	1 point							
2.	Prior ar	rests≥5	5		1 point		+…				
3.	Prior ar	rests for	local ordi	nance	1 point		+…				
4.	Age at	release b	petween 18	1 point		+…					
5.	Age at release ≥ 40				—1 point		+…				
					Score		=				
Score		—1	0	1	2	3	4				
Risk (%) 11.9			26.9	50.0	73.1	88.1	95.3				

This system is from ref.²¹, which was developed from refs.^{29,46}. The model was not created by a human; the selection of numbers and features come from the RiskSLIM machine learning algorithm.

Rudin and Ustun. Optimized Scoring Systems: Toward Trust in Machine Learning for Healthcare and Criminal Justice. INFORMS. 2018

Input Image x

Koh et al. Concept Bottleneck Models. PMLR. 2020.

Input Image x

Black Box

 \rightarrow label y (black-throated sparrow)

Koh et al. Concept Bottleneck Models. PMLR. 2020.

Input Image x

Human Designed Concepts has nape color :: grey has bill shape :: cone : has head pattern :: eyebow

Challenges:

- Scale: requires human efforts in building concept bottlenecks.
- **Performance**: perform worse than black-box models.

Koh et al. Concept Bottleneck Models. PMLR. 2020.

Koh et al. Concept Bottleneck Models. PMLR. 2020.

Agenda of this talk

What other advantages can interpretable models give us? Answer: **Robustness**.

9

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin, Chris Callison-Burch, Mark Yatskar

University of Pennsylvania

Describe what the *black-throated sparrow* looks like.

Describe what the *black-throated sparrow* looks like.

11

Describe what the *black-throated sparrow* looks like.

The black-throated sparrow is a small bird with a black head and throat. It has a white body with brown streaks on its back. Its wings are brown with white stripes. The black-throated sparrow has a long, thin beak. It has two long, thin legs. The black-throated sparrow has a long, thin tail. It is about 5 inches long. The black-throated throated sparrow is found in North America. It is a common bird in the western United States. The black-throated sparrow is <u>a member of the sparrow family</u>.

Describe what the *black-throated sparrow* looks like.

The black-throated sparrow is a small bird with a black head and throat. It has a white body with brown streaks on its back. Its wings are brown with white stripes. The black-throated sparrow has a long, thin beak. It has two long, thin legs. The black-throated sparrow has a long, thin tail. It is about 5 inches long. The black-throated sparrow is found in North America. It is a common bird in the western United States. The black-throated sparrow is <u>a member of the sparrow family</u>.

Describe what the *black-throated sparrow* looks like.

The black-throated sparrow is a **small bird** with a **black head and throat**. It has a **white body with brown streaks on its back**. Its **wings are brown with white stripes**. The black-throated sparrow has **a long, thin beak**. It **has two long, thin legs**. The black-throated sparrow has a **long, thin tail**. It is about **5 inches long**. The black-throated sparrow is <u>found in North America</u>. It is a <u>common bird in the western United States</u>. The black-throated sparrow is <u>a member of the sparrow family</u>.

Describe the **shape/color** of the *black-throated sparrow*.

The black-throated sparrow is a small bird with a **black head and throat**. It has a **white** body with brown streaks on its back. Its wings are brown with white stripes. The black-throated sparrow has a long, thin beak. It has two long, thin legs. The blackthroated sparrow has a long, thin tail. It is about 5 inches long. The black-throated sparrow is found in North America. It is a common bird in the western United States. The black-throated sparrow is <u>a member of</u> the sparrow family.

too general

The black-throated sparrow is a small bird with a **black head and throat**. It has a **white** body with brown streaks on its back. Its wings are brown with white stripes. The black-throated sparrow has a long, thin beak. It has two long, thin legs. The blackthroated sparrow has a long, thin tail. It is about 5 inches long. The black-throated sparrow is found in North America. It is a common bird in the western United States. The black-throated sparrow is <u>a member of</u> the sparrow family.

too general

The black-throated sparrow is a small bird with a **black head and throat**. It has a **white** body with brown streaks on its back. Its wings are brown with white stripes. The black-throated sparrow has a long, thin beak. It has two long, thin legs. The blackthroated sparrow has a long, thin tail. It is about 5 inches long. The black-throated sparrow is found in North America. It is a common bird in the western United States. The black-throated sparrow is <u>a member of</u> the sparrow family.

not visual

too general

The black-throated sparrow is a small bird with a **black head and throat**. It has a **white** body with brown streaks on its back. Its wings are brown with white stripes. The black-throated sparrow has a long, thin beak. It has two long, thin legs. The blackthroated sparrow has a long, thin tail. It is about 5 inches long. The black-throated sparrow is found in North America. It is a common bird in the western United States. The black-throated sparrow is <u>a member of</u> the sparrow family.

not visual

Submodular Optimization

Visual Discriminative Diverse

too general

The black-throated sparrow is a small bird with a **black head and throat**. It has a **white** body with brown streaks on its back. Its wings are brown with white stripes. The black-throated sparrow has a long, thin beak. It has two long, thin legs. The blackthroated sparrow has a long, thin tail. It is about 5 inches long. The black-throated sparrow is found in North America. It is a common bird in the western United States. The black-throated sparrow is <u>a member of</u> the sparrow family.

not visual

Submodular Optimization Visual Discriminative Diverse

Select the knowledge

too general		AT STAND
The black-throated sparrow is a small bird		
with a black head and throat. It has a white body with brown streaks on its back. Its	Submodular	black head and throat
wings are brown with white stripes. The	Optimization	long, thin tail
black-throated sparrow has a long, thin beak. It has two long, thin legs. The black-	Visual Discriminative	wings are brown
throated sparrow has a long, thin tail. It is about 5 inches long. The black-throated	Diverse	with white stripes
sparrow is <u>found in North America</u> . It is a <u>common bird in the western United States</u> .		White body with
The black-throated sparrow is <u>a member of</u> the sparrow family.		brown streaks
not visual	10	

black head and throat

long, thin tail

wings are brown with white stripes

black head and throat

long, thin tail

wings are brown with white stripes

class 1-axolotl

class 2-red panda

i class *N*-tree frog

N classes

[1] Raffel et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR. 2020.

[1] Raffel et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR. 2020.

prompt: describe what the *axolotl* looks like:
LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin

[1] Raffel et al. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR. 2020.

prompt: describe what the *axolotl* looks like:
LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin

General Prompt Template

- 1. describe what the [CLASS NAME] looks like:
- 2. describe the appearance of the [CLASS NAME]:
- 3. describe the color of the [CLASS NAME]:
- 4. describe the pattern of the [CLASS NAME]:
- 5. describe the shape of the [CLASS NAME]:
- Obtain 500 sentences for each class.
- Extract concepts from sentences using T5 [1].
- String match to identify and remove class name tokens in each concept.

14

prompt: describe what the *axolotl* looks like:
LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin

prompt: describe what the *axolotl* looks like:
LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin

- Given a superset of concepts S_y for a class y.
- Select a subset C_y for the bottleneck which are **discriminative** and **diverse**.

- Given a superset of concepts S_y for a class y.
- Select a subset C_y for the bottleneck which are **discriminative** and **diverse**.

$$\mathcal{F}(C_y) = \alpha \cdot \sum_{c \in C_y} D(c) + \beta \cdot \sum_{c_1 \in S_y} \max_{c_2 \in C_y} \phi(c_1, c_2)$$

discriminability coverage

• candidate S_y • selected C_y

- Given a superset of concepts S_y for a class y.
- Select a subset C_y for the bottleneck which are **discriminative** and **diverse**.

$$\mathcal{F}(C_y) = \alpha \cdot \sum_{c \in C_y} D(c) + \beta \cdot \sum_{c_1 \in S_y} \max_{c_2 \in C_y} \phi(c_1, c_2)$$

discriminability coverage

• candidate S_y • selected C_y

- Given a superset of concepts S_y for a class y. •
- Select a subset C_y for the bottleneck which are **discriminative** and **diverse**. •

$$\mathcal{F}(C_y) = \alpha \cdot \sum_{c \in C_y} D(c) + \beta \cdot \sum_{c_1 \in S_y} \max_{c_2 \in C_y} \phi(c_1, c_2)$$

discriminability coverage
$$\overset{\bullet}{\bullet} \overset{\bullet}{\bullet} \overset$$

selected C_u

- Given a superset of concepts S_y for a class y.
- Select a subset C_y for the bottleneck which are **discriminative** and **diverse**.

- Given a superset of concepts S_y for a class y.
- Select a subset C_y for the bottleneck which are **discriminative** and **diverse**.

$$\mathcal{F}(C_y) = \alpha \cdot \sum_{c \in C_y} D(c) + \beta \cdot \sum_{\substack{c_1 \in S_y \\ \text{discriminability}}} \max_{\substack{c_2 \in C_y \\ \text{coverage}}} \phi(c_1, c_2)$$

- Given a superset of concepts S_y for a class y.
- Select a subset C_y for the bottleneck which are **discriminative** and **diverse**.

$$\mathcal{F}(C_y) = \alpha \cdot \sum_{c \in C_y} D(c) + \beta \cdot \sum_{c_1 \in S_y} \max_{c_2 \in C_y} \phi(c_1, c_2)$$

discriminability coverage
$$\left(\begin{array}{c} \bullet & \bullet \\ \bullet$$

prompt: describe what the *axolotl* looks like:
LLM: The axolotl's limbs are delicate, and the tail is long and thin.
Extract concept using LM and delete class names:
Candidate concepts: limbs are delicate; tail is long and thin

Concept scores and label prediction

 $x \in \mathbb{R}^d$

Concept sco

el prediction

 $W \in \mathbb{R}^{N \times N_c}$

el prediction Concept sco concept scores: $g(\mathbf{x}, C) = \mathbf{x} \cdot \mathbf{E}_C^{\mathrm{T}} \in \mathbb{R}^{N_c}$ image encoder $(1, N_C)$ image encoder $\rightarrow x \in \mathbb{R}^{d}$. $es: g(\mathbf{x}, C) = \mathbf{x} \cdot \mathbf{E}_C^{\mathrm{T}} \in \mathbb{R}^{N_c}$ imageoneocht $(1, N_{C})$ $x \in \mathbb{R}^{u}$

 $W \in \mathbb{R}^{N \times N_c}$

Concept seo

$M k prediction \quad x \in \mathbb{R}^d$

Concept seo

$M k prediction \quad x \in \mathbb{R}^d$

Datasets

Experimental Setup

- Baselines:
 - Linear Probe: logistic regression on the image features.
 - PCBM: Post-hoc CBM (Yuksekgonul et al., 2022)
 - Ensemble CBM prediction with end-to-end prediction.
 - ComDL: Compositional Derivation Learning (Yun et al., 2022)
 - Human designed concepts.
 - Linear layer over CLIP similarity scores.
- Few-shot/Fully-supervised.
- Metric: accuracy.

Comparison to Black-box Model

Comparison to Blackbox Model

Figure 3. Test accuracy (%) comparison between LaBo and Linear Probe on 11 datasets. The x-axis represents the number of labeled images.

Comparison to Blackbox Model

Figure 3. Test accuracy (%) comparison between LaBo and Linear Probe on 11 datasets. The x-axis represents the number of labeled images.

Compare with Previous CBM

Method	w/ end-to-end	CIFAR-10	CIFAR-100
PCBM [66]	X	84.5	56.0
LaBo (Ours)	×	87.9	69.1
PCBM-h [66]	✓	87.6	69.9
Linear Probe	1	88.8	70.1

Table 2. Test accuracy comparison between LaBo and Post-hoc Concept Bottleneck Model (PCBM) on CIFAR-10 and CIFAR-100. "w/ end-to-end" denotes whether the model employs an end-to-end residual predictor from image features to targets.

Method	w/ manual concepts	1	5	Full
CompDL [67]	\checkmark	13.6	33.2	52.6
LaBo (Ours)	×	35.1	55.7	71.8
Linear Probe	-	28.4	55.4	75.5

Table 3. LaBo and CompDL evaluated on CUB for 1/5/full shots.

Compare with Previous CBM

Method	w/ end-to-end	CIFAR-10	CIFAR-100
PCBM [66]	×	84.5	56.0
LaBo (Ours)	×	87.9	69.1
PCBM-h [66]	✓	87.6	69.9
Linear Probe	1	88.8	70.1

LaBo doesn't rely on black box predictors. LaBo doesn't require human annotations.

residual predictor from image features to targets.

Method	w/ manual concepts	1	5	Full
CompDL [67]	✓	13.6	33.2	52.6
LaBo (Ours)	×	35.1	55.7	71.8
Linear Probe	-	28.4	55.4	75.5

Table 3. LaBo and CompDL evaluated on CUB for 1/5/full shots.

IOC

00.

nd
Qualitative Results

	Class Name	Top-3 Concepts	Class Name	Top-3 Concepts
ImageNet	badger	 1.short legs and long body make it an ex- cellent digger 2. black-and-white striped fur 3. coat is very shaggy 	ant Vertex of the second secon	 black and red stinger small, black insect with six legs long, slender anten- nae that it uses to smell and touch
Food101	ramen	 garnished with green onions, nori, and other toppings most grocery stores various toppings 	hummus	 chickpeas, tahini, olive oil, garlic, lemon juice made from cooked, mashed chickpeas roasted red peppers
CUB	eared grebe	 black and white plumage that is strik- ing in the sunlight black body with a long, slender neck red and black bill 	horned lark	 black line running through yellow face head is black with a white horn on each side black horn on each

T

side of their head

Qualitative Results

Conclusion

Leverage the **knowledge of LLM** to build interpretable models (CBMs).

With **vision-language models** (VLMs) and concept selection, interpretable models can achieve **competitive performance** as Black-box. What makes the critical domain more challenging?

The distribution of demographic variables in medical data can be skewed.

Distribution of race in CheXpert [1].

Distribution of skin colors in ISIC [2, 3].

The distribution of MIT News

The distribution of **MIT News**

⊾ subscribe can be skewed.

The distribution of **MIT News**

⊾ subscribe can be skewed.

CXR, Open-I, VinDr-CXR.

Skin Lesion Datasets: HAM10000, BCN20000 PAD-UFS-20, Melanoma, UWaterloo.

X-ray Datasets: Pneumonia, COVID-QU, NIH-CXR, Open-I, VinDr-CXR. Skin Lesion Datasets: HAM10000, BCN20000, PAD-UFS-20, Melanoma, UWaterloo.

Deep models don't have good priors for the medical domain. **Skin Lesion Images** X-rays 70 75 61.6 61.5 We need more priors in the model. 37.9 35 27.8 25 0 ()Pixel Random Pixel Random CNN ViT CNN ViT

X-ray Datasets: Pneumonia, COVID-QU, NIH-CXR, Open-I, VinDr-CXR. Skin Lesion Datasets: HAM10000, BCN20000, PAD-UFS-20, Melanoma, UWaterloo.

KnoBo: Knowledge-enhanced Concept Bottlenecks for Interpretable and Robust Medical Image Classification

Yue Yang, Mona Gandhi, Yufei Wang, Yifan Wu, Michael S. Yao, James C. Gee, Mark Yatskar

Query: How to diagnose COVID from X-rays?

Query: How to diagnose COVID from X-rays?

Query: How to diagnose COVID from X-rays?

Public5M Articles, 300M+ paragraphsSTATPEARLS9.3K Articles, 301.2K paragraphs

6.5M Articles,30.4M paragraphs

18 Medical Textbooks,125.8k paragraphs

6.5M Articles,30.4M paragraphs

18 Medical Textbooks,125.8k paragraphs

Publiced 5M Articles, 300M+ paragraphs

STATPEARLS 9.3K Articles, 301.2K paragraphs

18 Medical Textbooks,125.8k paragraphs

Publiced 5M Articles, 300M+ paragraphs

STATPEARLS 9.3K Articles, 301.2K paragraphs

6.5M Articles,30.4M paragraphs

18 Medical Textbooks,125.8k paragraphs

Publiced 5M Articles, 300M+ paragraphs

STATPEARLS 9.3K Articles, 301.2K paragraphs

18 Medical Textbooks,125.8k paragraphs

Is there ground-glass opacity?

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Learn a binary classifier for each concept.

Is there ground-glass opacity?

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Learn a binary classifier for each concept.

Is there ground-glass opacity?

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Learn a binary classifier for each concept.

Is there ground-glass opacity?

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Learn a binary classifier for each concept.

Is there ground-glass opacity?

How to ground the knowledge?

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Learn a binary classifier for each concept.

Is there ground-glass opacity?

Chung et al. Scaling instruction-finetuned language models. JMLR. 2024.

How to ground the knowledge?

Is there ground-glass opacity?

Paired Clinical Reports

Redemonstration of subtle posterior lung base densities corresponding to **ground-glass opacities** on prior CT and likely representing aspiration do not appear worsened. Tiny bilateral pleural effusions.

Learn a binary classifier for each concept.

Is there ground-glass opacity?

Convert text instances into image instances.

Chung et al. Scaling instruction-finetuned language models. JMLR. 2024.

Query: Are lung fields clear on both sides?

CLIP

Ours (w/ knowledge grounding)

Query: Are lung fields clear on both sides?

CLIP

Ours (w/ knowledge grounding)

Top-3 clear

Query: Are lung fields clear on both sides?

CLIP

Top-3 clear

Ours (w/ knowledge grounding)

Top-3 clear

Query: Are lung fields clear on both sides?

CLIP

Top-3 clear

Ours (w/ knowledge grounding)

Top-3 clear

Bottom-3 not clear

Query: Are lung fields clear on both sides?

CLIP

Ours (w/ knowledge grounding)

Top-3 clear

Bottom-3 not clear

Bottom-3 not clear

Is there evidence of nodules?

Knowledge Bottleneck

Confounded

Confounded

Confounded

Standard

X-ray: Pneumonia, COVID-QU, NIH-CXR, Open-I, VinDr-CXR.

Skin Lesion: HAM10000, BCN20000, PAD-UFS-20, Melanoma, UWaterloo.

Experimental Setup

- **Baselines** (same vision backbone):
 - Linear Probe: logistic regression on the image features.
 - End-to-end: Unfreeze the visual encoder and update all parameters.
 - LaBo: knowledge priors from LLM, no knowledge grounding.
- Metric:
 - Confounded datasets: ID (validation), OOD (test), delta \downarrow (|OOD-ID|), and domain-average accuracy (ID + OOD / 2).
 - Standard datasets: test accuracy.
 - Overall Performance: average over confounded and standard datasets.

Results on X-ray Datasets

Method	ID	OOD	delta↓	Domain Average	Standard	Overall
Linear Probe	<u>95.2</u>	30.7	64.5	62.9	73.8	<u>68.4</u>
End-to-End	96.7	17.0	79.7	56.8	70.2	63.5
LaBo	93.5	<u>34.8</u>	<u>58.7</u>	<u>64.2</u>	72.1	68.1
KnoBo	89.7	58.8	30.9	74.3	<u>73.1</u>	73.7

The best score is **bold** and the second best is <u>underlined</u>.

Results on Skin Lesion Datasets

Method	ID	OOD	delta↓	Domain Average	Standard	Overall
Linear Probe	91.9	<u>52.1</u>	39.8	<u>72.0</u>	<u>82.8</u>	77.4
End-to-End	95.6	47.6	48.0	71.6	84.3	<u>77.9</u>
LaBo	89.9	51.4	<u>38.4</u>	70.6	80.0	75.3
KnoBo	86.0	70.5	14.1	78.3	78.1	78.2

Results on Skin Lesion Datasets

Method	ID	OOD	delta↓	Domain Average	Standard	Overall
Linear Probe	91.9	<u>52.1</u>	39.8	<u>72.0</u>	<u>82.8</u>	77.4
End-to-End	95.6	47.6	48.0	71.6	84.3	<u>77.9</u>
LaBo	89.9	51.4	<u>38.4</u>	70.6	80.0	75.3
KnoBo	86.0	70.5	14.1	78.3	78.1	78.2

KnoBo is more robust on confounded datasets. KnoBo is competitive on standard datasets.

Comparison on Knowledge Types

Knowledge	X-ray Datasets			Skin Lesion Datasets		
	Confounded	Standard	Overall	Confounded	Standard	Overall
Prompt	72.9	72.8	<u>72.9</u>	79.3	72.8	76.0
Textbooks	72.0	<u>72.9</u>	72.4	<u>79.2</u>	76.4	77.8
Wikipedia	72.8	72.7	72.8	79.3	76.2	77.8
StatPearls	<u>73.4</u>	72.0	72.7	<u>79.2</u>	77.6	78.4
PubMed	74.3	73.1	73.7	79.3	<u>76.7</u>	<u>78.0</u>

Conclusion

Interpretable models with knowledge priors are **more robust in medical domains**.

Future Work

- Better feature representations for critical domains.
- Different structures of knowledge.
- Other usages of interpretable models.

Thank you!